Tìm nghiệm nguyên của phương trình sau:
x2=3y+63
Tìm nghiệm nguyên của phương trình sau: 2x +3y=7
\(2x+3y=7 \\ \Leftrightarrow x=\dfrac{-7-3y}{2} \)
PT có nghiệm nguyên \(\Leftrightarrow -7-3y \vdots 2 \\ \Leftrightarrow (-7-3y \in Ư(2) \\ \Leftrightarrow -7-3y \in {-2;2;-1;1} \\ \Leftrightarrow y \in {\dfrac{-5}{3} (L) ; -3(TM); -2(TM) ; \dfrac{-8}{3} (L)} \)
- Với \(y=-3\) có: \(x=1\).
- Với \(y=-2\) có: \(x=\dfrac{-1}{2} (L)\)
Vậy \((x;y)=(-3;1)\) là nghiệm nguyên duy nhất của phương trình.
Tìm nghiệm nguyên của phương trình sau :
xy-2x+3y=-1
\(pt\Leftrightarrow x\left(y-2\right)=-3y-1\)
\(\Leftrightarrow x=\frac{-3y-1}{y-2}=\frac{\left(-3y+6\right)-7}{y-2}=-3-\frac{7}{y-2}\)
Để \(x\inℤ\)thì \(\frac{7}{y-2}\inℤ\)
\(\Leftrightarrow y-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
lần lượt thay các giá trị của y-2 ta tìm dc các cặp nghiệm (x;y) là:
(-2; -5); (4; 1); (-10; 3); (-4; 9)
Tìm nghiệm nguyên của phương trình sau:
5x-3y=2xy-11
Biểu diễn y theo x :
\(\left(2x+3\right)y=5x+11\)
Dễ thấy :\(2x+3\) khác \(0\) (vì x là số nguyên) do đó:
\(y=\frac{5x+11}{2x+3}=2+\frac{x+5}{2x+3}\)
Để \(y\) \(\in\) \(Z\) thì \(x+5\) chia hết cho \(2x+3\)
\(\implies\) \(2.\left(x+5\right)\) chia hết cho \(2x+3\)
\(\implies\) \(2x+10\) chia hết cho \(2x+3\)
\(\implies\) \(2x+3+7\) chia hết cho \(2x+3\)
\(\implies\) \(7\) chia hết cho \(2x+3\)
\(\implies\) \(2x+3\) \(\in\) \(Ư\)(\(7\))={ \(1;-1;7;-7\) }
Ta có bảng sau:
\(2x+3\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(x\) | \(-1\) | \(-2\) | \(2\) | \(-5\) |
\(y\) | \(6\) | \(-1\) | \(3\) | \(2\) |
Vậy \(\left(x;y\right)\) \(\in\) {\(\left(-1;6\right),\left(-2;-1\right),\left(2;3\right),\left(-5;2\right)\) }
Tìm nghiệm nguyên của phương trình sau x1^4+x2^4+...+x8^4= 2015
Tìm các nghiệm nguyên của phương trình sau: 7(x2+y2) = 25(x+y)
Tìm nghiệm nguyên của phương trình x^2-3xy+3y^2=3y
\(\Leftrightarrow4x^2-12xy+12y^2=12y\)
\(\Leftrightarrow\left(2x-3y\right)^2=12y-3y^2\)
Do \(\left(2x-3y\right)^2\ge0;\forall x;y\Rightarrow12y-3y^2\ge0\)
\(\Rightarrow y^2-4y+4\le4\)
\(\Rightarrow\left(y-2\right)^2\le4\)
\(\Rightarrow\left[{}\begin{matrix}\left(y-2\right)^2=0\\\left(y-2\right)^2=1\\\left(y-2\right)^2=4\end{matrix}\right.\) \(\Rightarrow y=\left\{0;1;2;3;4\right\}\)
Lần lượt thế vào pt ban đầu ta được các cặp nghiệm:
\(\left(x;y\right)=\left(0;0\right);\left(0;1\right);\left(3;1\right);\left(3;3\right);\left(6;3\right);\left(6;4\right)\)
Tìm nghiệm nguyên dương của phương trình sau:
(2x + 5y + 1)(2|x| + y + x2 + x) = 105
Do VP là số lẻ
<=> 2x + 5y + 1 là số lẻ và \(2^{\left|x\right|}+y+x^2+x\) là số lẻ
<=> y chẵn và \(2^{\left|x\right|}+y+x\left(x+1\right)\) là số lẻ
=> \(2^{\left|x\right|}\) là số lẻ (do y chẵn và x(x+1) chẵn)
=> x = 0
PT <=> \(\left(5y+1\right)\left(1+y\right)=105\)
<=> y = 4 (thử lại -> thỏa mãn)
KL: x = 0; y = 4
tìm các nghiệm nguyên của phương trình 2x-3y=1 ???
2x - 3y = 1.
=> y = 2/3x - 1/3
=> Nghiệm tổng quát của phương trình 2x - 3y = 1 là đường thẳng y = 2/3x - 1/3
Cho phương trình: \(x^2-3y^2+2xy-2x-10y+4\)
a) Tìm nghiệm \(\left(x;y\right)\) của phương trình thỏa mãn: \(x^2+y^2=10\)
b) Tìm nghiệm nguyên của phương trình đã cho