Chứng minh
\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{3}=\sqrt{2}+1\)
Chứng minh đẳng thức
\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}=\sqrt{3}+\sqrt{2}+1\)
chứng minh đẳng thức
\(\sqrt{6+\sqrt{24}+\sqrt{12+\sqrt{8}}=\sqrt{3}+\sqrt{2}+1}\)
\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}=\sqrt{3+2+1+\sqrt{2^2.2.3}+\sqrt{2^2.3}+\sqrt{2^2.2}}\)
\(=\sqrt{\left(\sqrt{3}\right)^2+\left(\sqrt{2}\right)^2+1^2+2\sqrt{3}.\sqrt{2}+2\sqrt{3}.1+2\sqrt{2}.1}=\sqrt{\left(\sqrt{3}+\sqrt{2}+1\right)^2}\)
(áp dụng hằng đẳng thức (a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc)
\(=\sqrt{3}+\sqrt{2}+1\)
Chứng minh các hằng đẳng thức sau:
a) \(y\sqrt{10+\sqrt{60}-\sqrt{24}-\sqrt{40}}=\sqrt{3}+\sqrt{5}-\sqrt{2}\)
b) \(\sqrt{6+\sqrt{24+\sqrt{12}+\sqrt{8}}}-\sqrt{3}=\sqrt{2}+1\)
Chứng minh các hằng đẳng thức:
a) \(\sqrt{10+\sqrt{60}-\sqrt{24}-\sqrt{40}}=\sqrt{3}+\sqrt{5}-\sqrt{2}\)
b) \(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{3}=\sqrt{2}+1\)
Bạn áp dụng hằng đẳng thức (a+b+c)^2= a^2+b^2+c^2+2(ab+ac+bc)
rg: \(\sqrt{\left(\sqrt{7}-4\right)}^2\) = 3
chứng minh:
\(\left(\sqrt{8}-5\sqrt{2}+\sqrt{20}\right)\sqrt{5}-\left(3\sqrt{\dfrac{1}{10}}+10\right)=3.3\sqrt{10}\)
\(\left(\sqrt{12}-6\sqrt{3}+\sqrt{24}\right)\sqrt{6}\left(5\sqrt{\dfrac{1}{2}}+12\right)=-14.5\sqrt{2}\)
a: \(=\left(2\sqrt{2}-5\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)
\(=\left(-3\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)
\(=\left(-3\sqrt{10}+10\right)\left(\dfrac{3}{10}\sqrt{10}+10\right)\)
\(=-9-30\sqrt{10}+3\sqrt{10}+100=91-27\sqrt{10}\)
b: \(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}\cdot\left(\dfrac{5}{2}\sqrt{2}+12\right)\)
\(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\left(5\sqrt{3}+12\sqrt{6}\right)\)
\(=-60-144\sqrt{2}+30\sqrt{2}+144\)
\(=84-114\sqrt{2}\)
Chứng minh: (\(\left(\sqrt{12}-6\sqrt{3}+\sqrt{24}\right)\sqrt{6}-\left(5\sqrt{\dfrac{1}{12}}+12\right)=-14,5\sqrt{2}\)
\(\left(\sqrt{12}-6\sqrt{3}+\sqrt{24}\right)\sqrt{6}-\left(5\sqrt{\dfrac{1}{12}}+12\right)\)
\(=\left(2\sqrt{3}-6\sqrt{3}+2\sqrt{6}\right)\sqrt{6}-\left(\dfrac{5\sqrt{3}}{6}+12\right)\)
\(=6\sqrt{2}-18\sqrt{2}+12-\left(\dfrac{5\sqrt{3}+72}{6}\right)\)
\(=-12\sqrt{2}+12-\dfrac{5\sqrt{3}+72}{6}\)
\(=\dfrac{-72\sqrt{2}+72-5\sqrt{3}-72}{6}=\dfrac{5\sqrt{3}+72\sqrt{2}}{6}\simeq-18,4139\)
Ta có: \(-14,5\sqrt{2}\simeq-20,506\)
\(VT\ne VP\)
Đẳng thức không xảy ra
Chứng minh đẳng thức:
\(\left(\sqrt{12}-6\sqrt{3}+\sqrt{24}\right)\sqrt{6}-\left(4\sqrt{\frac{1}{2}}+12\right)=-14\sqrt{2}\)
Chứng minh rằng:
a) \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 24\)
b) \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}>10\)
c) \(\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 30\)
\(\text{c) }\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 30\)
Ta có : \(6< 6.25\Rightarrow\sqrt{6}< \sqrt{6.25}\Rightarrow\sqrt{6}< 2.5\)
\(12< 12.25\Rightarrow\sqrt{12}< \sqrt{12.25}\Rightarrow\sqrt{12}< 3.5\)
\(20< 20.25\Rightarrow\sqrt{20}< \sqrt{20.25}\Rightarrow\sqrt{20}< 4.5\)
\(30< 30.25\Rightarrow\sqrt{30}< \sqrt{30.25}\Rightarrow\sqrt{30}< 5.5\)
\(42< 42.25\Rightarrow\sqrt{42}< \sqrt{42.25}\Rightarrow\sqrt{42}< 6.5\)
\(50< 56.5\Rightarrow\sqrt{50}< \sqrt{56.25}\Rightarrow\sqrt{50}< 7.5\) \(\left(1\right)\)
Từ \(\left(1\right)\) suy ra :
\(\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 2.5+3.5+4.5+5.5+6.5+7.5\)
\(\Rightarrow\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 30\) \(\left(ĐPCM\right)\)
Vậy \(\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 30\)
\(\)\(\text{a) }\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 24\)
Ta có : \(1< 9\Rightarrow\sqrt{1}< \sqrt{9}\Rightarrow\sqrt{1}< 3\)
\(2< 9\Rightarrow\sqrt{2}< \sqrt{9}\Rightarrow\sqrt{2}< 3\)
\(3< 9\Rightarrow\sqrt{3}< \sqrt{9}\Rightarrow\sqrt{3}< 3\)
\(...\)
\(8< 9\Rightarrow\sqrt{8}< \sqrt{9}\Rightarrow\sqrt{8}< 3\) \(\left(1\right)\)
Từ \(\left(1\right)\) suy ra :
\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 3+3+...+3_{\left(\text{8 số hạng 3}\right)}\) \(\) \(\)
\(\) \(\Rightarrow\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 3\cdot8\)
\(\Rightarrow\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 24\) \(\left(ĐPCM\right)\)
Vậy \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 24\)
\(\text{b) }\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>10\)
Ta có : \(1< 100\Rightarrow\sqrt{1}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{1}}< \dfrac{1}{\sqrt{100}}\)
\(2< 100\Rightarrow\sqrt{2}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{2}}< \dfrac{1}{\sqrt{100}}\)
\(...\)
\(100=100\Rightarrow\sqrt{100}=\sqrt{100}\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}\) \(\left(1\right)\)
Từ \(\left(1\right)\) suy ra :
\(\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}_{\left(\text{100 số hạng}\dfrac{1}{\sqrt{100}}\right)}\)
\(\Rightarrow\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}\cdot100\)
\(\Rightarrow\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>\dfrac{10}{\sqrt{100}}\)
\(\Rightarrow\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>10\) \(\left(ĐPCM\right)\)
Vậy \(\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>10\)
\(\)
Cho phép mình chữa đề câu \(c\) thành như thế này nhé Fairy Tail
\(\text{c) }\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 33\)
Ta có : \(6< 9\Rightarrow\sqrt{6}< \sqrt{9}\Rightarrow\sqrt{6}< 3\)
\(12< 16\Rightarrow\sqrt{12}< \sqrt{16}\Rightarrow\sqrt{12}< 4\)
\(20< 25\Rightarrow\sqrt{20}< \sqrt{25}\Rightarrow\sqrt{20}< 5\)
\(30< 36\Rightarrow\sqrt{30}< \sqrt{36}\Rightarrow\sqrt{30}< 6\)
\(42< 49\Rightarrow\sqrt{42}< \sqrt{49}\Rightarrow\sqrt{42}< 7\)
\(50< 64\Rightarrow\sqrt{50}< \sqrt{64}\Rightarrow\sqrt{50}< 8\) \(\left(1\right)\)
Từ \(\left(1\right)\) suy ra :
\(\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 3+4+5+6+7+8\)
\(\Rightarrow\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 33\) \(\left(ĐPCM\right)\)
Vậy \(\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 33\)
chứng minh :a) 11+6\(\sqrt{2}\)= (3+\(\sqrt{2}\))\(^2\)
b) \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)=6
c) \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)= -2
d) \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)=-4
a: \(\left(3+\sqrt{2}\right)^2=3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2\)
\(=9+6\sqrt{2}+2=11+6\sqrt{2}\)
b: \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=3+\sqrt{2}+3-\sqrt{2}=6\)
c: \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{7}-1-\sqrt{7}-1=-2\)
d: \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(=\sqrt{45-2\cdot3\sqrt{5}\cdot2+4}-\sqrt{45+2\cdot3\sqrt{5}\cdot2+4}\)
\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(=3\sqrt{5}-2-3\sqrt{5}-2=-4\)
a) \(\left(3+\sqrt{2}\right)^2=9+6\sqrt{2}+2=11+6\sqrt{2}\)
b) \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=3+\sqrt{2}+3-\sqrt{2}=6\)
c) \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{7}-1-\sqrt{7}-1=-2\)
d) \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(=3\sqrt{5}-2-3\sqrt{5}-2=-4\)