ae rút gọn bài này hộ mình cái
\(\frac{\sqrt{X^2}+1}{X+1-\sqrt{X}}\)
Xin mọi người giúp dùm em bài này ạ : Rút gọn
A= \(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}+\frac{3x+9}{9-x}\)
B= \(\left(\frac{\sqrt{x}+2}{x-2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right):\frac{2\sqrt{x}}{x-1}\)
Em xin cám ơn mọi người .
Bài 1: Rút gọn biểu thức sau
\(P=\left(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\frac{2}{\sqrt{2}-\sqrt{x}}-\frac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)
Bài 1: Rút gọn biểu thức sau:
P=\(\frac{4}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}+2}{x-1},0\le x\ne1\)
1-\(\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
Các bạn giúp mình rút gọn sao cho phương trình trên có kết quả là \(\frac{2\sqrt{x}}{\sqrt{x}-1}\)
ae làm giúp mình bài này nhé!
Hãy thay các chữ số vào các chữ cái x,y trong N=20x0y04 chia hết cho 13
làm hộ mình là ok nha!
giúp mình với có j mình tick cho
P=\(\left(1-\frac{\sqrt{3}}{x-9}+\frac{3}{\sqrt{x}-3}\right):\frac{\sqrt{x}}{\sqrt{x}+3}\)
a, rút gọn P
b, tìm x để P nguyên
Bài 1 : Rút gọn biểu thức
A= \(\sqrt{8}-2\sqrt{2}+\sqrt{20}-2\sqrt{5}-2\)
B= \(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\) Với x > 0 ; x≠1
Tìm giá trị của x để B = A
Bà 2 : Cho biểu thức : \(\left(\frac{1}{x+\sqrt{x}}-\frac{1}{\sqrt{x}+1}\right):\frac{\sqrt{x}}{x+2\sqrt{x}+1}\) ( x>0 )
a, Rút gọn biểu thức P
b, Tìm các giá trị của x để P > 1/2
Mn ơi mn giải giúp em với ạ ! em cảm ơn ạ
Bài 1:
\(A=\sqrt{8}-2\sqrt{2}+\sqrt{20}-2\sqrt{5}-2=2\sqrt{2}-2\sqrt{2}+2\sqrt{5}-2\sqrt{5}-2=-2\)\(B=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}\)
Bài 2:
\(a,P=\left(\frac{1}{x+\sqrt{x}}-\frac{1}{\sqrt{x}+1}\right):\frac{\sqrt{x}}{x+2\sqrt{x}+1}\left(x>0\right)\)
\(=\left[\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\times\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
\(=\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\times\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
\(=\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\sqrt{x}\cdot\sqrt{x}}\)
\(=\frac{1-x}{x}\)
\(b,\forall x>0\Leftrightarrow\frac{1-x}{x}>\frac{1}{2}\)
\(\Leftrightarrow2\left(1-x\right)>x\)
\(\Leftrightarrow2-2x>x\)
\(\Leftrightarrow-3x>-2\)
\(\Leftrightarrow x< \frac{2}{3}\)
\(\Rightarrow P>\frac{1}{2}\Leftrightarrow\forall0< x< \frac{2}{3}\)
Cho A= \(\dfrac{1}{\sqrt{x}+1}\) - \(\dfrac{x+2}{x\sqrt{x}+1}\)
a, Rút gọn A
b, Tính giá trị nhỏ nhất của A
( CẦN GẤP GIÚP MÌNH Ạ)
a: Ta có: \(A=\dfrac{1}{\sqrt{x}+1}-\dfrac{x+2}{x\sqrt{x}+1}\)
\(=\dfrac{x-\sqrt{x}+1-x-2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{-1}{x-\sqrt{x}+1}\)
\(A=\frac{x-\sqrt{x}+1}{x\sqrt{x}+1}+\frac{x+\sqrt{x}+1}{x\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}+1}\)
rút gọn