Những câu hỏi liên quan
Tấn Thanh
Xem chi tiết
Mai Đới
Xem chi tiết
lê duy mạnh
13 tháng 10 2019 lúc 20:34

tính bc

tính bd,dc

tính hd,hb,hc

Cô gái thất thường (Ánh...
13 tháng 10 2019 lúc 20:52

tự vẽ hình..

\(BC=\sqrt{AC^2+AB^2}=\sqrt{12^2+16^2}=20cm\)( Định lý pitago cho tam giác vuông ABC)

\(\Rightarrow BH=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2cm\)( Áp dụng hệ thức lương cho tam giác vuông ABC)

\(HC=BC-HB=20-7,2=12,8cm\)

Cô gái thất thường (Ánh...
13 tháng 10 2019 lúc 21:00

Áp dụng tính chất tia phân giác: \(\frac{BD}{AB}=\frac{CD}{AC}=\frac{BD+CD}{AB+AC}=\frac{BC}{12+16}=\frac{20}{12+16}=\frac{5}{7}\)

\(\Rightarrow BD=\frac{AB.5}{7}=\frac{12.5}{7}\approx8,571\)( chả biết ý này có đ ko nx)

Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 7 2021 lúc 22:17

1) 

a) Xét ΔABC có 

\(BC^2=AC^2+AB^2\left(7.5^2=4.5^2+6^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A, ta được:

\(AB\cdot AC=AH\cdot BC\)

\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{4.5\cdot6}{7.5}=\dfrac{27}{7.5}=3.6\left(cm\right)\)

Vậy: AH=3,6cm

b) Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=4.5^2-3.6^2=7.29\)

hay CH=2,7(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BH=BC-CH=7,5-2,7=4,8(cm)

Vậy: BH=4,8cm; CH=2,7cm

Edogawa Conan
1 tháng 7 2021 lúc 22:22

1.a)Ta có:7,52=4,52+62 nên theo định lí Py-ta-go 

=>\(\Delta ABC\) vuông tại A

Ta có: AB.AC=BC.AH

=> \(AH=\dfrac{AC.AB}{BC}=\dfrac{4,5.6}{7,5}=3.6\)  (cm)

Edogawa Conan
1 tháng 7 2021 lúc 22:28

b)Ta có:AB2=BC.BH

  \(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{7,5}=4,8\) (cm)

Ta có:BH+CH=BC

     =>CH=BC-BH=7,5-4,8=2,7 (cm)

 

Nguyen Phuong Thao
Xem chi tiết
Trương Minh Trọng
26 tháng 6 2017 lúc 12:06

Áp dụng hệ thức lượng tìm được \(BH=\frac{36}{5};CH=\frac{64}{5}\)(cm)

Áp dụng tính chất đường phân giác tìm được \(\frac{BD}{DC}=\frac{AB}{AC}\Leftrightarrow\frac{BD}{BC}=\frac{AB}{AB+AC}\Leftrightarrow\frac{BD}{20}=\frac{12}{12+16}=\frac{12}{28}\Rightarrow BD=\frac{20\cdot12}{28}=\frac{60}{7}\)

\(\Rightarrow HD=BD-BH=\frac{60}{7}-\frac{36}{5}=\frac{300-252}{35}=\frac{48}{35}\)(cm)

Quynh Existn
Xem chi tiết
Phúc
20 tháng 7 2021 lúc 10:10

Ta có: BC^2 = AB^2 + AC^2
= 12^2 + 16^2 = 400
=> BC = √400 = 20 (cm)
Δ ABC vuông có đường cao AH:
=> AB^2 = BH.BC
=> BH = AB^2/BC = 12^2/20 = 7.2 (cm)
=> CH = 20 - 7.2 = 12.8 (cm)
Ta có: AD là phân giác
=> BD/CD = AB/AC
=>( BD + CD)/CD = (AB + AC)/AC
=> 20/CD = 28/16
=> CD = 80/7
=> HD = CH - CD
= 12.8 - (80/7)
= 48/35 (cm)
(HC tự tính nha)

Nguyễn Huy Tú
20 tháng 7 2021 lúc 10:15

undefined

Đặng Thành Trung
Xem chi tiết
Nguyễn Đức Trí
22 tháng 8 2023 lúc 16:19

a) \(AH^2=HB.HC=50.8=400\)

\(\Rightarrow AH=20\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.20\left(50+8\right)=\dfrac{1}{2}.20.58\left(cm^2\right)\)

mà \(S_{ABC}=\dfrac{1}{2}AB.AC\)

\(\Rightarrow AB.AC=20.58=1160\)

Theo Pitago cho tam giác vuông ABC :

\(AB^2+AC^2=BC^2\)

\(\Rightarrow\left(AB+AC\right)^2-2AB.AC=BC^2\)

\(\Rightarrow\left(AB+AC\right)^2=BC^2+2AB.AC\)

\(\Rightarrow\left(AB+AC\right)^2=58^2+2.1160=5684\)

\(\Rightarrow AB+AC=\sqrt[]{5684}=2\sqrt[]{1421}\left(cm\right)\)

Chu vi Δ ABC :

\(AB+AC+BC=2\sqrt[]{1421}+58=2\left(\sqrt[]{1421}+29\right)\left(cm\right)\)

Phạm Mạnh Kiên
Xem chi tiết
Phạm Mạnh Kiên
Xem chi tiết
Nguyễn Huy Tú
16 tháng 7 2021 lúc 14:45

undefined

Phạm Mạnh Kiên
16 tháng 7 2021 lúc 14:38

nhờ các bạn giải giúp hộ mình vs ạ mình cần gấp

Pham Thi Anh Thu
Xem chi tiết