\(\sqrt{36-12\sqrt{5}}:\sqrt{6}\)
\(\sqrt{17-3\sqrt{32}-\sqrt{17+3\sqrt{32}}}\)
\(\sqrt{36-12\sqrt{5}-\sqrt{36+12\sqrt{5}}}\)
\(\sqrt{36-12\sqrt{5}-\sqrt{36+12\sqrt{5}}}\)
THỰC HIỆN PHÉP TÍNH
1,\(\sqrt{3+\sqrt{5}}.\sqrt{2}\)
2,\(\sqrt{3-\sqrt{5}.\sqrt{8}}\)
3,\((\sqrt{\dfrac{3}{4}}-\sqrt{3}+5\sqrt{\dfrac{4}{3})}.\sqrt{12}\)
4,\((\sqrt{\dfrac{1}{7}}-\sqrt{\dfrac{16}{7}}+\sqrt{7}):\sqrt{7}\)
5, \(\sqrt{36-12\sqrt{5}}:\sqrt{6}\)
6,\(\sqrt{3-\sqrt{5}:}\sqrt{2}\)
1: \(\sqrt{3+\sqrt{5}}\cdot\sqrt{2}=\sqrt{6+2\sqrt{5}}=\sqrt{5}+1\)
3) \(\left(\sqrt{\dfrac{3}{4}}-\sqrt{3}+5\cdot\sqrt{\dfrac{4}{3}}\right)\cdot\sqrt{12}\)
\(=\left(\dfrac{\sqrt{3}}{2}-\dfrac{2\sqrt{3}}{2}+5\cdot\dfrac{2}{\sqrt{3}}\right)\cdot\sqrt{12}\)
\(=\dfrac{17\sqrt{3}}{6}\cdot2\sqrt{3}\)
\(=\dfrac{34\cdot3}{6}=\dfrac{102}{6}=17\)
Giải phương trình:
1. \(\sqrt{\dfrac{42}{5-x}}+\sqrt{\dfrac{60}{7-x}}=6\)
2. \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
3. \(x^2+x+12\sqrt{x+1}=36\)
4. \(\sqrt{x+2}-\sqrt{x-6}=2\)
5. \(\sqrt[3]{x-1}-\sqrt[3]{x-3}=\sqrt[3]{2}\)
6. \(5\sqrt{1+x^3}=2\left(x^2+2\right)\)
6. \(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
1.
ĐKXĐ: \(x< 5\)
\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)
\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)
\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)
\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
b.
ĐKXĐ: \(x\ge2\)
\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=2\)
3.
ĐKXĐ: \(x\ge-1\)
\(x^2+x-12+12\left(\sqrt{x+1}-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)+\dfrac{12\left(x-3\right)}{\sqrt{x+1}+2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4+\dfrac{12}{\sqrt{x+1}+2}\right)=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Tính và rút gọn :
1) \(\sqrt{14+2\sqrt{33}}\)
2) \(\sqrt{29-12\sqrt{5}}\)
3) \(\sqrt{16+2\sqrt{55}}\)
4) \(\sqrt{13+4\sqrt{10}}\)
5) \(\sqrt{36+12\sqrt{5}}\)
6) \(\sqrt{21-6\sqrt{6}}\)
Bạn xem lại câu 5 xem có sai đề không chứ mình tính mãi không ra
1. \(\sqrt{14+2\sqrt{33}}=\sqrt{\left(\sqrt{11}+\sqrt{3}\right)^2}=\sqrt{11}+\sqrt{3}\)
2. \(\sqrt{29-12\sqrt{5}}=\sqrt{\left(\sqrt{20}-\sqrt{9}\right)^2}=2\sqrt{5}-3=-3+2\sqrt{5}\)
3. \(\sqrt{16+2\sqrt{55}}=\sqrt{\left(\sqrt{11}+\sqrt{5}\right)^2}=\sqrt{11}+\sqrt{5}\)
4. \(\sqrt{13+4\sqrt{10}}=\sqrt{\left(\sqrt{8}+\sqrt{5}\right)^2}=2\sqrt{2}+\sqrt{5}\)
5. \(\sqrt{36+12\sqrt{5}}=\sqrt{\left(\sqrt{30}+\sqrt{6}\right)^2}=\sqrt{30}+\sqrt{6}\)
6. \(\sqrt{21-6\sqrt{6}}=\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}=3\sqrt{2}-\sqrt{3}=-\sqrt{3}+3\sqrt{2}\)
P/s: Đây là dạng toán căn lồng căn, được dùng máy tính để biến đổi thành căn bình phương, nếu bạn chưa biết thì search gg nhé.
Rút gọn:
a/\(\sqrt{29-12\sqrt{5}}\)
b/\(\sqrt{30-12\sqrt{5}}\)
c/\(\sqrt{36-12\sqrt{5}}\)
d/\(\sqrt{35+12\sqrt{6}}\)
\(\sqrt{29-12\sqrt{5}}=\sqrt{20-2.2\sqrt{5}.3+9}=\sqrt{\left(\sqrt{20}-3\right)^2}=\sqrt{20}-3=2\sqrt{5}-3\)
Đúng cho mình đi dẫ
\(\sqrt{3}×\sqrt{27}-\sqrt{144}:\sqrt{36}\)
\(\left(2\sqrt{9}+3\sqrt{36}\right):4\)
\(\sqrt{7}-\sqrt{8-2\sqrt{7}}\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)
\(\dfrac{5+3\sqrt{5}}{\sqrt{5}}+\dfrac{3+\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5}+3\right)\)
\(\sqrt{27}+5\sqrt{12}-2\sqrt{3}=11\sqrt{3}\)
\(\sqrt{3\cdot27}-\sqrt{\dfrac{144}{36}}\)=\(\sqrt{81}-\sqrt{4}\)=9-2=7
\(\dfrac{2\cdot3+3\cdot6}{4}\)=6
\(\sqrt{7}-\sqrt{7-2\cdot\sqrt{7}+1}\)=\(\sqrt{7}-\left(\sqrt{7}-1\right)\)=1
\(\dfrac{\sqrt{3-2\cdot\sqrt{3}+1}}{\sqrt{2}\cdot\left(\sqrt{3}-1\right)}\)=\(\dfrac{\sqrt{3}-1}{\sqrt{2}\cdot\left(\sqrt{3}-1\right)}\)=\(\dfrac{1}{\sqrt{2}}\)
\(\dfrac{\sqrt{5}\cdot\left(\sqrt{5}+3\right)}{\sqrt{5}}\)+\(\dfrac{\sqrt{3}\cdot\left(1+\sqrt{3}\right)}{\sqrt{3}+1}\)-(\(\sqrt{5}+3\))
=(\(\sqrt{5}+3\))+\(\sqrt{3}\)-(\(\sqrt{5}+3\))=\(\sqrt{3}\)
\(\sqrt{3}\cdot\sqrt{9}+5\cdot\sqrt{4}\cdot3-2\sqrt{3}\)
=\(\sqrt{3}\cdot\left(3+10-2\right)\)
=\(11\sqrt{3}\)
\(A=\sqrt{\frac{36-16\sqrt{5}}{12+2\sqrt{35}}}-\sqrt{\frac{81-36\sqrt{5}}{11+4\sqrt{7}}}\)
ta có ;\(36-16\sqrt{5}=16-2\cdot4\cdot2\sqrt{5}+20=\left(2\sqrt{5}-4\right)^2\)
\(12+2\sqrt{35}=7+2\sqrt{7}\cdot\sqrt{5}+5=\left(\sqrt{7}+\sqrt{5}\right)^2\)
\(81-36\sqrt{5}=36-2\cdot6\cdot3\sqrt{5}+45=\left(3\sqrt{5}-6\right)^2\)
\(11+4\sqrt{7}=\sqrt{7}+2\cdot2\cdot\sqrt{7}+4=\left(\sqrt{7}+2\right)^2\)
TỪ ĐÓ TÍNH RA
Tính:
\(A=\sqrt{38-12\sqrt{5}}+\sqrt{36+12\sqrt{5}}\)
Tính:
\(A=\sqrt{38-12\sqrt{5}}+\sqrt{36+12\sqrt{5}}\)