Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuyết Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 4 2023 lúc 19:00

loading...  

Lê Phương Linh
Xem chi tiết

\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)

Nguyễn Minh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 5 2022 lúc 9:34

\(A=\sqrt{x}+\dfrac{2}{\sqrt{x}}\ge2\cdot\sqrt{\sqrt{x}\cdot\dfrac{2}{\sqrt{x}}}=2\sqrt{2}\)

Dấu '=' xảy ra khi \(\sqrt{x}\cdot\sqrt{x}=2\)

hay \(x=2\)

Kim Khánh Linh
Xem chi tiết
Lê Đức Lương
17 tháng 5 2021 lúc 19:21

1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)

Thay \(x=\frac{1}{9}\) vào A ta có:

\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)

2. \(B=...\)

    \(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

    \(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

     \(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{\sqrt{x}+3}{-6}\)

Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)

hay \(P\le-\frac{1}{2}\)

Dấu "=" xảy ra <=> x=0

Khách vãng lai đã xóa
BadCrush
17 tháng 5 2021 lúc 19:31

toán lớp 9 khó zậy em đọc k hỉu 1 phân số

Khách vãng lai đã xóa
Trần Hoàng Anh
Xem chi tiết
Lê Song Phương
21 tháng 6 2023 lúc 20:55

Cách 1: Ta nhận thấy với mọi \(x>0\) thì \(3\sqrt{x}+2>2\sqrt{x}+2\), do đó \(B>1\). Với \(x=0\) thì \(B=1\). Do đó \(min_B=1\Leftrightarrow x=0\)

 Cách 1 tuy nhanh gọn nhưng nó chỉ có tác dụng trong một số ít các trường hợp. Trường hợp này may mắn cho ta ở chỗ ta có thể đánh giá tử lớn hơn hoặc bằng mẫu với mọi \(x\ge0\) (dấu "=" chỉ xảy ra khi \(x=0\))

Cách 2: \(B=\dfrac{3\sqrt{x}+2}{2\sqrt{x}+2}\)

\(\Leftrightarrow2B\sqrt{x}+2B=3\sqrt{x}+2\)

\(\Leftrightarrow\left(2B-3\right)\sqrt{x}=2-2B\)

\(\Leftrightarrow\sqrt{x}=\dfrac{2-2B}{2B-3}\)

Vì \(\sqrt{x}\ge0\) nên \(\dfrac{2-2B}{2B-3}\ge0\)

\(\Leftrightarrow1\le B< \dfrac{3}{2}\). Như vậy \(min_B=1\Leftrightarrow x=0\)

 Rõ ràng cách 2 dài hơn cách 1 nhưng nó có thể áp dụng trong nhiều dạng bài tìm GTNN hay GTLN khác nhau. Bạn xem xét bài toán rồi chọn cách làm cho phù hợp là được.

B =  \(\dfrac{3\sqrt{x}+2}{2\sqrt{x}+2}\) = \(\dfrac{3\sqrt{x}+3-1}{2\sqrt{x}+2}\) = \(\dfrac{3\left(\sqrt{x}+1\right)-1}{2\left(\sqrt{x}+1\right)}\) = \(\dfrac{3}{2}\) - \(\dfrac{1}{2\left(\sqrt{x}+1\right)}\)

Vì  \(\dfrac{1}{2\sqrt{x}+2}\) > 0 ∀ \(x\) ≥ 0 ⇒ B min ⇔A =  \(\dfrac{1}{2\sqrt{x}+2}\) max

2\(\sqrt{x}\) ≥ 0 ⇒ 2\(\sqrt{x}\) + 2 ≥ 2  ⇒ Max A = \(\dfrac{1}{2}\) ⇔ \(x\) = 0

Vậy Min B = \(\dfrac{3}{2}\) - \(\dfrac{1}{2}\)  =  1 ⇔ \(x\) = 0

Vũ Bùi Trung Hiếu
Xem chi tiết
HIẾU 10A1
5 tháng 3 2021 lúc 20:39

GTNN P là -3 phần 2 khi và chỉ khi x=0

Vy Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 10 2021 lúc 23:23

a: Ta có: \(x^2=3-2\sqrt{2}\)

nên \(x=\sqrt{2}-1\)

Thay \(x=\sqrt{2}-1\) vào A, ta được:

\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)

Thiếu Gia Họ Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 11 2021 lúc 14:16

\(a,ĐK:x\ge1;x\ne3\\ b,A=\dfrac{\left(\sqrt{x-1}+\sqrt{2}\right)\left(\sqrt{x-1}-\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x-1}+\sqrt{2}\)

Tutu
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 2 2021 lúc 23:18

a) Thay x=4 vào biểu thức \(B=\dfrac{3}{\sqrt{x}-1}\), ta được:

\(B=\dfrac{3}{\sqrt{4}-1}=\dfrac{3}{2-1}=3\)

Vậy: Khi x=4 thì B=3

b) Ta có: P=A-B

\(\Leftrightarrow P=\dfrac{6}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{3}{\sqrt{x}-1}\)

\(\Leftrightarrow P=\dfrac{6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{6+x-\sqrt{x}-3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{x-\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)