(x-2y)3+(x+2y)3
Câu 13: Đa thức x2 – 6x –4y2 + 9 được phân tích thành nhân tử có kết quả là
A. (x + 2y + 3)(x + 2y - 3)
B. (x – 3 – 2y)(x – 3 + 2y)
C. (x – 2y - 3)(x - 2y + 3)
D. (x – 3 – 4y)(x – 3 + 4y)
Chứng minh đẳng thức:
(\(\dfrac{x}{x+2y}\) - \(\dfrac{x+2y}{2y}\))(\(\dfrac{x}{x-2y}\) - 1 + \(\dfrac{8y^3}{8y^3-x^3}\) ) = \(\dfrac{x}{2y-x}\)
\(\left(\dfrac{x}{x+2y}-\dfrac{x+2y}{2y}\right)\left(\dfrac{x}{x-2y}-1+\dfrac{8y^3}{8y^3-x^3}\right)=\dfrac{2xy-\left(x+2y\right)^2}{2y\left(x+2y\right)}\left(\dfrac{2y}{x-2y}+\dfrac{8y^3}{\left(2y-x\right)\left(4y^2+2yx+x^2\right)}\right)=\dfrac{-\left(x^2+2xy+4y^2\right)}{2y\left(x+2y\right)}\cdot\dfrac{2y\left(4y^2+2yx+x^2\right)-8y^3}{\left(x-2y\right)\left(x^2+2xy+4y^2\right)}=\dfrac{-\left(x^2+2xy+4y^2\right)2y\left(4y^2+2xy+x^2-4y^2\right)}{2y\left(x+2y\right)\left(x-2y\right)\left(x^2+2x+4y^2\right)}=\dfrac{-\left(x^2+2xy\right)}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{x}{2y-x}\)
Câu: Đẳng thức nào sau đây là đúng. *
4x^3y^2 – 8x^2y^3 = 4x^2.y(xy – 2y^2)
4x^3y^2 – 8x^2y^3 = 4x^2y^2(x – 2y)
4x^3y^2 – 8x^2y^3 = x^2y^2(x – 2y)
4x^3y^2 – 8x^2y^3 = 4x^2y^2(x – y)
ta có 4 x 3 y 2 – 8 x 2 y 3 = 4 x 2 y 2 . x – 4 x 2 y 2 . 2 y = 4 x 2 y 2 ( x – 2 y )
Vậy 4x3y2 – 8x2y3 = 4x2y2(x – 2y)
Đáp án cần chọn là: C
bấm đúng cho mik đi
A=\(\dfrac{1}{5}x^2y^3+\dfrac{2}{3}x^2y^3-\dfrac{3}{4}x^2y^3+x^2y^3\)
B=\(\left(x^2y\right)^3.\left(\dfrac{1}{2}xy^2z\right)^2\)
Tính A+B,A-B
Helpp..
\(A=x^2y^3\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{3}{4}+1\right)=\dfrac{67}{60}x^2y^3\)
\(B=x^6y^3\cdot\dfrac{1}{4}x^2y^4z^2=\dfrac{1}{4}x^8y^7z^2\)
\(A+B=\dfrac{67}{60}x^2y^3+\dfrac{1}{4}x^8y^7z^2\)
\(A-B=\dfrac{67}{60}x^2y^3-\dfrac{1}{4}x^8y^7z^2\)
B=x6y3⋅14x2y4z2=14x8y7z2B=x6y3⋅14x2y4z2=14x8y7z2
A−B=6760x2y3−14x8y7z2
\(A+B=\dfrac{67}{60}x^2y^3+\left(x^6y^3\right)\left(\dfrac{1}{4}x^2y^4z^2\right)\)
\(=\dfrac{67}{60}x^2y^3+\dfrac{1}{4}x^8y^7z^2\)
\(A-B=\dfrac{67}{60}x^2y^3-\dfrac{1}{4}x^8y^7z^2\)
Tính giá trị của biểu thức
A=
\(\dfrac{1}{5}x^2y^3+\dfrac{2}{3}x^2y^3-\dfrac{3}{4}x^2y^3+x^2y^3\)
B=\(\left(x^2y\right)^3.\left(\dfrac{1}{2}xy^2z\right)^2\)
\(A=\dfrac{1}{5}x^2y^3+\dfrac{2}{3}x^2y^3-\dfrac{3}{4}x^2y^3+x^2y^3=\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{3}{4}+1\right)x^2y^3=\dfrac{67}{60}x^2y^3\\ B=\left(x^2y\right)^3\left(\dfrac{1}{2}xy^2z\right)^2=x^6y^3.\dfrac{1}{4}x^2y^4z^2=\dfrac{1}{4}x^8y^7z^2\)
tìm đa thức m biết
3x^2y^3 - x^2y - M=x^2y^3 + x^2y
\(3x^2y^3-x^2y-M=x^2y^3+x^2y\\ \Rightarrow M=3x^2y^3-x^2y-x^2y^3-x^2y\\ \Rightarrow M=2x^2y^3-2x^2y\)
\(\Leftrightarrow M=3x^2y^3-x^2y-x^2y^3-x^2y=2x^2y^3-2x^2y\)
A=\(\dfrac{1}{5}x^2y^3+\dfrac{2}{3}x^2y^3-\dfrac{3}{4}x^2y^3+x^2y^3\)
Tính A+B,A-B
cần gấp ạ..
\(A=\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{3}{4}+1\right)x^2y^3=\dfrac{67}{60}x^2y^3\)
bth B đâu bạn ?
Bài 1 : Tìm x , y , z biết : x +2y + 3z = \(\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}\)
Làm tính chia:
a) [ 8 ( x + 2 y ) 5 - 10 ( x + 2 y ) 6 ]: 3 ( - x - 2 y ) 2 ;
b) [ 3 ( 2 x - 4 y ) 3 - 8 ( 2 y - x ) 4 ]: ( 4 y 2 - 4 xy + x 2 ) ;
c) ( 64 x 3 + y 3 ) :(8x + 2y).
Bài 1 : Tìm x , y , z biết : x + 2y + 3z = \(\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}\)
Đặt \(x+2y+3z=A\)
Áp dụng tính chất của dãy tỉ số bằng nhau có :
\(A=\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}=\frac{x+2y+2y+3z+3z+x}{x+2y+2y+3z+3z+x-3-3-3}\)
\(\Rightarrow A=\frac{2A}{2A-9}\)
\(\Rightarrow\frac{2}{2A-9}=1\)
\(\Rightarrow2A-9=2\)
\(\Rightarrow A=\frac{11}{2}\)
Cũng áp dụng tính chất của dãy tỉ số bằng nhau và có :
\(A=\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}\)\(=\frac{\left(x+2y\right)+\left(2y+3z\right)-\left(3z+x\right)}{\left(2y+3z-3\right)+\left(3z+x-3\right)-\left(x+2y-3\right)}=\frac{4y}{4y-3}=\frac{11}{2}\)
\(\Rightarrow2.\left(4y\right)=11.\left(4y-3\right)\)
\(\Rightarrow8y=44y-33\)
\(\Rightarrow36y=33\)
\(\Rightarrow y=\frac{11}{12}\)
\(A=\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}\)\(=\frac{\left(x+2y\right)-\left(2y+3z\right)+\left(3z+x\right)}{\left(2y+3z-3\right)-\left(3z+x-3\right)+\left(x+2y-3\right)}=\frac{2x}{2x-3}=\frac{11}{2}\)
\(\Rightarrow2.\left(2x\right)=11\left(2x-3\right)\)
\(\Rightarrow4x=22x-33\)
\(\Rightarrow18x=33\)
\(\Rightarrow x=\frac{33}{18}=\frac{11}{6}\)
\(\Rightarrow3z=A-x-2y=\frac{11}{2}-\frac{11}{6}-\frac{2.11}{12}=\frac{11}{6}\)
\(\Rightarrow z=\frac{11}{6}:3=\frac{11}{18}\)
Vậy ...
Cho mình bổ sung : \(TH2:A=0\)
\(\Rightarrow2x=4y=6z=0\)
\(\Rightarrow x=y=z=0\)
Vậy ....