So sánh 2 số thực sau :
\(\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}}\)và 3
có 100 dấu căn
Viết số nghịch đảo của mỗi số sau dưới dạng không chứa dấu căn ở mẫu:
a) \(4\sqrt{3}\)
b) \(3\sqrt{2}+2\sqrt{3}\)
c) \(\dfrac{5+\sqrt{5}}{4\sqrt{2}}\)
a) \(\dfrac{1}{4\sqrt{3}}=\dfrac{\sqrt{3}}{12}\)
b) \(\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{3\sqrt{2}-2\sqrt{3}}{6}\)
c) \(\dfrac{4\sqrt{2}}{5+\sqrt{5}}=\dfrac{4\sqrt{2}\left(5-\sqrt{5}\right)}{20}=\dfrac{5\sqrt{2}-\sqrt{10}}{5}\)
\(a.\)
\(\dfrac{1}{4\sqrt{3}}=\dfrac{\sqrt{3}}{12}\)
\(b.\)
\(\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{3\sqrt{2}-2\sqrt{3}}{\left(3\sqrt{2}\right)^2-\left(2\sqrt{3}\right)^2}=\dfrac{3\sqrt{2}-2\sqrt{3}}{6}\)
\(c.\)
\(\dfrac{4\sqrt{2}}{5+\sqrt{5}}=\dfrac{4\sqrt{2}\cdot\left(5-\sqrt{5}\right)}{5^2-\left(\sqrt{5}\right)^2}=\dfrac{\sqrt{2}\cdot\left(5-\sqrt{5}\right)}{5}\)
\(\sqrt{2+\sqrt{2+......+\sqrt{2+\sqrt{4}}}}\)( 100 dấu căn )
Không dùng máy tính; hãy so sánh các số thực sau:
a) \(\sqrt{17}+\sqrt{26}\) và 9 b) \(\sqrt{48}\)và 13-\(\sqrt{35}\)
c) \(\sqrt{31}-\sqrt{19}\)và 6-\(\sqrt{17}\) d) 9-\(\sqrt{58}\)và \(\sqrt{80}-\sqrt{59}\)
e) \(\sqrt{13}-\sqrt{12}\)và \(\sqrt{12}-\sqrt{11}\) f) \(\sqrt{7-\sqrt{21+4\sqrt{5}}}\)và \(\sqrt{5}\) -1
g) \(\sqrt{5}+\sqrt{10}+1\)và \(\sqrt{35}\) h) \(\dfrac{15-2\sqrt{10}}{3}\) và \(\sqrt{15}\)
i) \(\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}}\) (100 dấu căn) và 3
1. Giải phương trình: \(x^2-6x=6\)
2. Không dùng máy tính hãy so sánh: \(\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}}\) và 3
(100 dấu căn)
Bài 1 :
Ta có : \(x^2-6x=6\)
=> \(x^2-6x-6=0\)
=> \(x^2-2.3x+9=15\)
=> \(\left(x-3\right)^2=15\)
=> \(x=3\pm\sqrt{15}\)
Vậy ...
Đặt \(x=\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}},x>0\)
=> \(x^2=4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}\)
=> \(x^2-x-4=4+\sqrt{4+\sqrt{4}+...}-\sqrt{4+\sqrt{4+\sqrt{4}+...+\sqrt{4}}}-4=0\)
=> \(x=\frac{1\pm\sqrt{17}}{2}< 3\)
Vậy ...
so sánh các số sau: a,\(0,5\sqrt{100}-\sqrt{\frac{4}{25}}và\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5\)
\(0,5\sqrt{100}-\sqrt{\frac{4}{25}}=0,5.10-\frac{\sqrt{4}}{\sqrt{25}}=5-\frac{2}{5}=\frac{23}{5}=\frac{138}{30}\)
\(\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5=\left(\sqrt{\frac{10}{9}-\frac{3}{4}}\right):5=\sqrt{\frac{13}{36}}:5=\frac{\sqrt{13}}{6}:5=\frac{\sqrt{13}}{30}\)
Vì 13 < 138 nên \(\sqrt{13}< 138\Rightarrow\frac{\sqrt{13}}{30}< \frac{138}{30}\)
Vậy \(0,5\sqrt{100}-\sqrt{\frac{4}{25}}>\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5\).
Đưa thừa số vào trong dấu căn rồi so sánh các cặp số
a)\(2\sqrt{5}\) và \(5\sqrt{2}\)
b) \(3\sqrt{13}\)và \(4\sqrt{11}\)
c) \(\frac{3}{4}.\sqrt{7}\)và \(\frac{2}{5}.\sqrt{5}\)
d) \(\frac{2}{a-b}.\sqrt{\frac{a^2-b^2}{2}}\) ( với 0 < a < b )
a)Ta có: \(2\sqrt{5}< 5\sqrt{2}\)\(2\sqrt{5}=\sqrt{2^2.5}=\sqrt{20}\)
\(5\sqrt{2}=\sqrt{5^2.2}=\sqrt{50}\)
Vì \(\sqrt{20}< \sqrt{50}\)
Nên \(2\sqrt{5}< 5\sqrt{2}\)
b)Ta có: \(3\sqrt{13}=\sqrt{3^2.13}=\sqrt{117}\)
\(4\sqrt{11}=\sqrt{4^2.11}=\sqrt{176}\)
Vì \(\sqrt{117}< \sqrt{176}\)
Nên \(3\sqrt{13}< 4\sqrt{11}\)
c) Ta có: \(\frac{3}{4}.\sqrt{7}=\sqrt{\left(\frac{3}{4}\right)^2.7}=\sqrt{\frac{63}{16}}\)
\(\frac{2}{5}.\sqrt{5}=\sqrt{\left(\frac{2}{5}\right)^2.5}=\sqrt{\frac{4}{5}}\)
Vì \(\sqrt{\frac{63}{16}}>1\)
\(\sqrt{\frac{4}{5}}< 1\)
Nên \(\sqrt{\frac{63}{16}}>\sqrt{\frac{4}{5}}\)
Vậy \(\frac{3}{4}.\sqrt{7}>\frac{2}{5}.\sqrt{5}\)
so sánh hai căn thức sau
6 và 4 +\(\sqrt{3}\) và 5+ \(\sqrt{2}\)
\(4+\sqrt{3}< 4+\sqrt{4}=4+2=6\)
Vậy \(6>4+\sqrt{3}\)
1.Phân tích căn thức sau :
\(4+\sqrt{3}< 4+\sqrt{4}=4+2=6\)
2.Cách làm
\(=>6>4+\sqrt{3}\)
3.cuối cùng
~Hk tốt~
Chứng minh rằng \(\sqrt{4+\sqrt{4+\sqrt{4+\sqrt{4+......+\sqrt{4}}}}< 3}\) có n dấu căn, n > 2
\(\text{So sánh 2 số }:A=\sqrt{4+\sqrt{7}}\text{ và }B=\sqrt{4-\sqrt{7}}+\sqrt{2}\)
\(\sqrt{2}B=\sqrt{8-2\sqrt{7}}+2=\sqrt{\left(\sqrt{7}-1\right)^2}+2=\sqrt{7}-1+2=\sqrt{7}+1\)
\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}=\sqrt{\left(\sqrt{7}+1\right)^2}=\sqrt{7}+1\)
Vậy A = B
\(A\sqrt{2}=\sqrt{8+2\sqrt{7}}=\sqrt{\left(\sqrt{7}\right)^2+2\sqrt{7}+1}=\sqrt{\left(\sqrt{7}+1\right)^2}=\sqrt{7}+1\)
\(B\sqrt{2}=\sqrt{8-2\sqrt{7}}+\left(\sqrt{2}\right)^2=\sqrt{\left(\sqrt{7}-1\right)^2}+2=\sqrt{7}-1+2=\sqrt{7}+1\)
=> \(A\sqrt{2}=B\sqrt{2}\) => A = B