Giải phương trình: \(x^4+4x^3+6x^2+4x+\sqrt{x^2+2x+17}=3\)
Giải bất phương trình sau : a/ 2x ^ 2 + 6x - 8 < 0 x ^ 2 + 5x + 4 >=\ 2) Giải phương trình sau : a/ sqrt(2x ^ 2 - 4x - 2) = sqrt(x ^ 2 - x - 2) c/ sqrt(2x ^ 2 - 4x + 2) = sqrt(x ^ 2 - x - 3) b/ x ^ 2 + 5x + 4 < 0 d/ 2x ^ 2 + 6x - 8 > 0 b/ sqrt(- x ^ 2 - 5x + 2) = sqrt(x ^ 2 - 2x - 3) d/ sqrt(- x ^ 2 + 6x - 4) = sqrt(x ^ 2 - 2x - 7)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
Giải phương trình:
a) \(\sqrt{x^2+4}=\sqrt{2x+3}\)
b) \(\sqrt{x^2-6x+9}=2x-1\)
c) \(\sqrt{4x+12}=\sqrt{9x+17}-5\)
d) \(\sqrt{4x^2-6x+1}=\left|2x-5\right|\)
a: ĐKXĐ: x>=-3/2
\(\sqrt{x^2+4}=\sqrt{2x+3}\)
=>\(x^2+4=2x+3\)
=>\(x^2-2x+1=0\)
=>\(\left(x-1\right)^2=0\)
=>x-1=0
=>x=1(nhận)
b: \(\sqrt{x^2-6x+9}=2x-1\)(ĐKXĐ: \(x\in R\))
=>\(\sqrt{\left(x-3\right)^2}=2x-1\)
=>\(\left\{{}\begin{matrix}\left(2x-1\right)^2=\left(x-3\right)^2\\x>=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(2x-1-x+3\right)\left(2x-1+x-3\right)=0\\x>=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+2\right)\left(3x-4\right)=0\\x>=\dfrac{1}{2}\end{matrix}\right.\)
=>x=4/3(nhận) hoặc x=-2(loại)
c:
Sửa đề: \(\sqrt{4x+12}=\sqrt{9x+27}-5\)
ĐKXĐ: \(x>=-3\)
\(\sqrt{4x+12}=\sqrt{9x+27}-5\)
=>\(2\sqrt{x+3}=3\sqrt{x+3}-5\)
=>\(-\sqrt{x+3}=-5\)
=>x+3=25
=>x=22(nhận)
d: ĐKXĐ: \(\left[{}\begin{matrix}x< =\dfrac{3-\sqrt{5}}{4}\\x>=\dfrac{3+\sqrt{5}}{4}\end{matrix}\right.\)
\(\sqrt{4x^2-6x+1}=\left|2x-5\right|\)
=>\(\sqrt{\left(4x^2-6x+1\right)}=\sqrt{4x^2-20x+25}\)
=>\(4x^2-6x+1=4x^2-20x+25\)
=>\(-6x+20x=25-1\)
=>\(14x=24\)
=>x=12/7(nhận)
Giải phương trình:
a) \(5\sqrt{x^3+1}=2\left(x^2+2\right)\)
b) \(x^4+4x^3+6x^2+4x+\sqrt{x^2+2x+17}=3\)
b)\(x^4+4x^3+6x^2+4x+\sqrt{x^2+2x+17}=3\)
Tự giải điều kiện nhé
\(pt\Leftrightarrow x^4+4x^3+6x^2+4x+1+\sqrt{x^2+2x+17}-4=0\)
\(\Leftrightarrow\left(x+1\right)^4+\frac{x^2+2x+17-16}{\sqrt{x^2+2x+17}+4}=0\)
\(\Leftrightarrow\left(x+1\right)^4+\frac{x^2+2x+1}{\sqrt{x^2+2x+17}+4}=0\)
\(\Leftrightarrow\left(x+1\right)^4+\frac{\left(x+1\right)^2}{\sqrt{x^2+2x+17}+4}=0\)
\(\Leftrightarrow\left(x+1\right)^2\left[\left(x+1\right)^2+\frac{1}{\sqrt{x^2+2x+17}+4}\right]=0\)
Dễ thấy: \(\left(x+1\right)^2+\frac{1}{\sqrt{x^2+2x+17}+4}>0\) (vô nghiệm)
\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x+1=0\Rightarrow x=-1\) (thỏa)
Vậy x=-1 là nghiệm của pt
a)Đk:\(x\ge-1\)
\(pt\Leftrightarrow5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left(x^2+2\right)\)
Đặt \(\hept{\begin{cases}\sqrt{x+1}=a>0\\\sqrt{x^2-x+1}=b>0\end{cases}}\) thì ta có:
\(a^2+b^2=\left(x^2-x+1\right)+\left(x+1\right)=x^2+2\)
Ta được pt tương đương \(5ab=2\left(a^2+b^2\right)\)
\(\Leftrightarrow2a^2+2b^2-5ab=0\)
\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)
*)Xét \(2a=b\Rightarrow2\sqrt{x+1}=\sqrt{x^2-x+1}\)
\(\Leftrightarrow4\left(x+1\right)=x^2-x+1\)
\(\Leftrightarrow-x^2+5x+3=0\Leftrightarrow x_{1,2}=-\frac{-5\pm\sqrt{37}}{2}\) (thỏa)
*)Xét \(b=2a\)\(\Rightarrow\sqrt{x+1}=2\sqrt{x^2-x+1}\)
\(\Rightarrow x+1=4\left(x^2-x+1\right)\)
\(\Rightarrow-4x^2+5x-3=0\Rightarrow-\frac{1}{16}\left(8x-5\right)^2-\frac{23}{16}< 0\) (loại)
Giải phương trình
\(\frac{2x^4-6x^3+6x^2-4x+2}{\sqrt{4x^4+4x^3+x^2+3x}}=x^2-x+1\)
\(4x^4+4x^3+x^2+3x\ge0\)
\(4x^4+4x^2+1-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)\sqrt{\left(x^2-x+1\right)\left(2x^2+1\right)+2x^4+6x^3-2x^3+4x-1}\)
\(\Leftrightarrow\left(2x^2+1\right)^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)\sqrt{\left(x^2-x+1\right)\left(2x^2+1\right)+2x^4+6x^3-2x^3+4x-1}\)
\(2x^2+1=u;\sqrt{4x^4+4x^3+x^2+3x}=v\left(u>0;v>0\right)\)
\(\hept{\begin{cases}u^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)v\\v^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)u\end{cases}\Rightarrow u^2-v^2=\left(x^2-x+1\right)\left(v-u\right)\Leftrightarrow\orbr{\begin{cases}u=v\\u+v+x^2-x+1=0\end{cases}}}\)
\(u+v+x^2-x+1=0\Leftrightarrow u+v+\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)\(u=v\Leftrightarrow4x^4+4x^2+1=4x^4+4x^3+x^2+3x\Leftrightarrow\left(x-1\right)^3=-3x^3\Leftrightarrow x-1=-x\sqrt[3]{3}\Leftrightarrow x=\frac{1}{1+\sqrt[3]{3}}\)Đối chiếu điều kiện ta thu được nghiệm duy nhất \(x=\frac{1}{1+\sqrt[3]{3}}\)Giải phương trình:
1. \(x^4-6x^2-12x-8=0\)
2. \(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
3. \(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
4. \(2x^2.\sqrt{-4x^4+4x^2+3}=4x^4+1\)
5. \(x^2+4x+3=\sqrt{\dfrac{x}{8}+\dfrac{1}{2}}\)
6. \(\left\{{}\begin{matrix}4x^3+xy^2=3x-y\\4xy+y^2=2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}\sqrt{x^2-3y}\left(2x+y+1\right)+2x+y-5=0\\5x^2+y^2+4xy-3y-5=0\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\sqrt{2x^2+2}+\left(x^2+1\right)^2+2y-10=0\\\left(x^2+1\right)^2+x^2y\left(y-4\right)=0\end{matrix}\right.\)
1.
\(x^4-6x^2-12x-8=0\)
\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\pm\sqrt{5}\)
3.
ĐK: \(x\ge-9\)
\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)
\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)
Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)
\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
2.
ĐK: \(x\ne\dfrac{2\pm\sqrt{2}}{2};x\ne\dfrac{-2\pm\sqrt{2}}{2}\)
\(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{1}{2x+\dfrac{1}{x}+4}+\dfrac{1}{2x+\dfrac{1}{x}-4}=\dfrac{3}{5}\)
Đặt \(2x+\dfrac{1}{x}+4=a;2x+\dfrac{1}{x}-4=b\left(a,b\ne0\right)\)
\(pt\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{5}\left(1\right)\)
Lại có \(a-b=8\Rightarrow a=b+8\), khi đó:
\(\left(1\right)\Leftrightarrow\dfrac{1}{b+8}+\dfrac{1}{b}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{2b+8}{\left(b+8\right)b}=\dfrac{3}{5}\)
\(\Leftrightarrow10b+40=3\left(b+8\right)b\)
\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-\dfrac{20}{3}\end{matrix}\right.\)
TH1: \(b=2\Leftrightarrow...\)
TH2: \(b=-\dfrac{20}{3}\Leftrightarrow...\)
Giải các phương trình sau:
a) \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}\)
b) \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
Lời giải:
a. Đề thiếu
b. PT $\Leftrightarrow \sqrt{(x-1)^2}+\sqrt{(x-2)^2}=3$
$\Leftrightarrow |x-1|+|x-2|=3$
Nếu $x\geq 2$ thì pt trở thành:
$x-1+x-2=3$
$\Leftrightarrow 2x-3=3$
$\Leftrightarrow x=3$ (tm)
Nếu $1\leq x< 2$ thì:
$x-1+2-x=3\Leftrightarrow 1=3$ (vô lý)
Nếu $x< 1$ thì:
$1-x+2-x=3$
$\Leftrightarrow x=0$ (tm)
Giải phương trình sau:
a) \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
b) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
Giải các phương trình sau:
a) \(\sqrt{x+4\sqrt{x-4}}=2\)
b) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)
c) \(\sqrt{2x^2-2x+1}=2x-1\)
Lời giải:
a. ĐKXĐ: $x\geq 4$
PT $\Leftrightarrow \sqrt{(x-4)+4\sqrt{x-4}+4}=2$
$\Leftrightarrow \sqrt{(\sqrt{x-4}+2)^2}=2$
$\Leftrightarrow |\sqrt{x-4}+2|=2$
$\Leftrightarrow \sqrt{x-4}+2=2$
$\Leftrightarrow \sqrt{x-4}=0$
$\Leftrightarrow x=4$ (tm)
b. ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$
$\Leftrightarrow |2x-1|=|x-3|$
\(\Rightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)
c.
PT \(\Rightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 2x^2-2x+1=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x^2-2x=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x(x-1)=0\end{matrix}\right.\Rightarrow x=1\)
Giải phương trình:
\(\sqrt{2x^2+6x-8}+\sqrt{2x^2+4x-6}-3\sqrt{x+4}=3\sqrt{x+3}+1\)
cách khác đơn giản hơn nhiều
Đk:\(x\ge1\)
\(pt\Leftrightarrow\sqrt{2\left(x-1\right)\left(x+4\right)}+\sqrt{2\left(x-1\right)\left(x+3\right)}-3\sqrt{x+4}-3\sqrt{x+3}-1=0\)
\(\Leftrightarrow\sqrt{2\left(x-1\right)\left(x+4\right)}-3\sqrt{x+4}+\sqrt{2\left(x-1\right)\left(x+3\right)}-3\sqrt{x+3}=1\)
\(\Leftrightarrow\sqrt{x+4}\left(\sqrt{2\left(x-1\right)}-3\right)+\sqrt{x+3}\left(\sqrt{2\left(x-1\right)}-3\right)=1\)
\(\Leftrightarrow\left(\sqrt{x+4}+\sqrt{x+3}\right)\left(\sqrt{2\left(x-1\right)}-3\right)=1\)
Xét Ư(1)={1;-1}={....}
Dễ nhé, tự làm nốt
Đk: \(x\ge1\)
\(pt\Leftrightarrow\sqrt{2x^2+6x-8}+\sqrt{2x^2+4x-6}-3\sqrt{x+4}-3\sqrt{x+3}-1=0\)
\(\Leftrightarrow\sqrt{2x^2+6x-8}-\frac{10}{3}\sqrt{x+3}+\frac{1}{3}\sqrt{x+3}-1\sqrt{2x^2+4x-6}-3\sqrt{x+4}=0\)
\(\Leftrightarrow\frac{2x^2+6x-8-\frac{100}{9}\left(x+3\right)}{\sqrt{2x^2+6x-8}+\frac{10}{3}\sqrt{x+3}}+\frac{x-6}{3\left(\sqrt{x+3}+3\right)}+\frac{2x^2+4x-6-9\left(x+4\right)}{\sqrt{2x^2+4x-6}+3\sqrt{x+4}}=0\)
Để đỡ rối ta đặt mấy cái mẫu \(\hept{\begin{cases}N=\sqrt{2x^2+6x-8}+\frac{10}{3}\sqrt{x+3}>0\\H=\sqrt{x+3}+3>0\\T=\sqrt{2x^2+4x-6}+3\sqrt{x+4}>0\end{cases}}\)
\(\Leftrightarrow\frac{18x^2-46x-372}{9N}+\frac{x-6}{3H}+\frac{2x^2-5x-42}{T}=0\)
\(\Leftrightarrow\left(x-6\right)\left(\frac{18x+62}{9N}+\frac{1}{3H}+\frac{2x+7}{T}\right)=0\)
Dễ thấy: \(\forall x\ge1\) thì \(\frac{18x+62}{9N}+\frac{1}{3H}+\frac{2x+7}{T}>0\)
\(\Rightarrow x-6=0\Rightarrow x=6\) (thỏa mãn)