Dùng hằng đẳng thức thực hiện phép tính:
(3x+2y)2
Thực hiện phép tính :( triển khai bằng hằng đẳng thức )
( 2y + 3x2)3
`@` `\text {Ans}`
`\downarrow`
`(2y + 3x^2)^3`
`= (2y)^3 + 3. (2y)^2 . 3x^2 + 3. 2y . (3x^2)^2 + (3x^2)^3`
`= 8y^3 + 3. 4y^2 . 3x^2 + 6y . 9x^4 + 27x^6`
`= 8y^3 + 36x^2y^2 +54x^4y + 27x^6`
___
CT:
`(A+B)^3 = A^3 + 3A^2B + 3AB^2 + B^3`
Để triển khai biểu thức (2y + 3x^2)^3 bằng hằng đẳng thức, ta sử dụng công thức nhị thức Newton:
(2y + 3x^2)^3 = C(3, 0)(2y)^3(3x^2)^0 + C(3, 1)(2y)^2(3x^2)^1 + C(3, 2)(2y)^1(3x^2)^2 + C(3, 3)(2y)^0(3x^2)^3
Trong đó:
C(n, k) là tổ hợp chập k của n (C(n, k) = n! / (k!(n-k)!))
^ là dấu mũ
() là dấu ngoặc
Áp dụng công thức, ta có:
(2y + 3x^2)^3 = C(3, 0)(2y)^3(3x^2)^0 + C(3, 1)(2y)^2(3x^2)^1 + C(3, 2)(2y)^1(3x^2)^2 + C(3, 3)(2y)^0(3x^2)^3
= 1(2y)^3 + 3(2y)^2(3x^2) + 3(2y)(3x^2)^2 + 1(3x^2)^3
= 8y^3 + 12y^2(3x^2) + 6y(9x^4) + 27x^6
= 8y^3 + 36y^2x^2 + 54yx^4 + 27x^6
Vậy biểu thức (2y + 3x^2)^3 sau khi triển khai bằng hằng đẳng thức là 8y^3 + 36y^2x^2 + 54yx^4 + 27x^6.
Dùng hằng đẳng thức thực hiện phép tính:
-(3+x)2
\(-\left(3+x\right)^2=-\left(3^2+2\cdot3\cdot x+x^2\right)\)
\(=-\left(9+6x+x^2\right)\)
\(=-x^2-6x-9\)
a. Thực hiện phép nhân -\(\dfrac{3}{5}\) x^2y (x+3y^2)
b. Khai triển hằng đẳng thức: (x-√7y)^2
b) ( x - √7y )² = x² - 2x.7y + ( √7y )²
= x² - 14xy + 7y
Thực hiện phép tính: (tính hợp lý)
𝑎) (2𝑥−1)(2𝑥+1)(2𝑥−5) ;
𝑏) (𝑥2+𝑥−3)(𝑥2−𝑥+3)
* Gợi ý: Dùng những hằng đẳng thức đáng nhớ để biến đổi.
\(a,=\left(4x^2-1\right)\left(2x-5\right)=8x^3-20x^2-2x+5\\ b,=\left[x^2+\left(x-3\right)\right]\left[x^2-\left(x-3\right)\right]=x^4-\left(x-3\right)^2\\ =x^4-x^2+6x-9\)
Dùng hằng đẳng thức để thực hiện phép tính
(a+1)×(a+2)×(a^2+4)×(a-1)×(a^2+1)×(a-2)
(a^2-1)×(a^2-a+1)×(a^2+a+1)
dùng hằng đẳng thức tính:
(1+3x)(3x-1).2
\(\left(1+3x\right)\left(3x-1\right).2\)
\(=\left[\left(3x\right)^2-1^2\right].2\)
\(=\left(9x^2-1\right).2\)
\(=18x^2-2\)
Áp dụng hằng đẳng thức đáng nhớ để thực hiện phép chia : (8x^3-1) : (4x^2+2x+1)
bài 3 ; áp dụng hằng đẳng thức để thực hiện phép chia
h, ( 27x mũ 3 - 8 ) : ( 3x - 2 )
f, ( x mũ 2 - 2xy mũ 2 + y mũ 2 ) : ( x - y mũ 2 )
g, ( x mũ 4 - 2x mũ 2 + 1 ) : ( 1 - x mũ 2 )
h, \(27x^3-8=\left(3x-2\right)\left(9x^2+6x+4\right)\)
\(\Rightarrow\left(27x^3-8\right):\left(3x-2\right)\\ =\left(3x-2\right)\left(9x^2+6x+4\right):\left(3x-2\right)\\ =9x^2+6x+4\)
g, \(x^4-2x^2+1=\left(x^2-1\right)^2\)
\(\Rightarrow\left(x^4-2x^2+1\right):\left(1-x^2\right)\\ =\left(x^2-1\right)^2:\left(1-x^2\right)\\ =x^2-1\)
sử dụng hằng đẳng thức đáng nhớ để thực hiện phép tính (a+2b-3c-d)(a+2b+3c+d)=?
help!
Ta có: \(\left(a+2b-3c-d\right)\left(a+2b+3c+d\right)\)
\(=\left[\left(a+2b\right)-\left(3c+d\right)\right]\cdot\left[\left(a+2b\right)+\left(3c+d\right)\right]\)
\(=\left(a+2b\right)^2-\left(3c+d\right)^2\)
\(=a^2+4ab+4b^2-9c^2-6cd-d^2\)
( a + 2b - 3c - d )( a + 2b + 3c + d )
= [ ( a + 2b ) - ( 3c + d ) ][ ( a + 2b ) + ( 3c + d ) ]
= ( a + 2b )2 - ( 3c + d )2
= a2 + 4ab + 4b2 - ( 9c2 + 6cd + d2 )
= a2 + 4ab + 4b2 - 9c2 - 6cd - d2
(a + 2b − 3c − d) (a + 2b + 3c + d)
= [(a + 2b) − (3c + d) ] · [(a + 2b) + (3c + d)]
= (a + 2b)2 − (3c + d)2
= a2 + 4ab + 4b2 − 9c2 − 6cd − d2
Hok tốt