Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Anh
Xem chi tiết
Thư Phan
29 tháng 11 2021 lúc 20:49

Tham khảo: https://loigiaihay.com/bai-75-trang-106-sgk-toan-8-tap-1-c43a3348.html

Nguyễn Ngọc Anh
29 tháng 11 2021 lúc 20:57

Giải bài 76 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

* Xét tam giác ABC có E và F lần lượt là trung điểm của AB và BC

=> EF là đường trung bình của tam giác ABC

Giải bài 76 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

* Tương tự tam giác ADC có HG là đường trung bình nên:

Giải bài 76 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

Từ (1) và (2) suy ra: EF // HG và EF = HG

=> tứ giác EFGH là hình bình hành.

Lại có: EF // AC và BD ⊥ AC nên BD ⊥ EF

EH // BD và EF ⊥ BD nên EF ⊥ EH

Nên Giải bài 76 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

Hình bình hành EFGH có Ê = 90º nên là hình chữ nhật

phương uyên
Xem chi tiết
Cao Tùng Lâm
19 tháng 11 2021 lúc 14:05

Tham kho dưới đây nhé 

 

https://loigiaihay.com/bai-75-trang-106-sgk-toan-8-tap-1-c43a3348.html

Nguyễn Hoàng Minh
19 tháng 11 2021 lúc 14:05

Xét hcn ABCD có M,N,P,Q là trung điểm AB,BC,CD,DA

Ta thấy MN,PQ lần lượt là đường trung bình tam giác ABC và ACD

Suy ra MN//AC;\(MN=\dfrac{1}{2}AC\) và PQ//AC;\(PQ=\dfrac{1}{2}AC\)

Do đó MN//PQ và MN=PQ

Hay MNPQ là hbh

Lại có NP là đtb tg BCD nên \(NP=\dfrac{1}{2}BD\)

Mà ABCD là hcn nên \(NP=\dfrac{1}{2}BD=\dfrac{1}{2}AC=MN\)

Vậy MNPQ là hthoi (đpcm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 10 2018 lúc 2:18

Giải bài 75 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

* Xét tam giác ABD có E và H lần lượt là trung điểm của AB và AD

=> EH là đường trung bình của tam giác

Giải bài 75 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

* Chứng minh tương tự, ta có:

Giải bài 75 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

* Lại có, ABCD là hình chữ nhật nên AC = BD (3)

Từ (1), (2), (3) suy ra: EF = FG = GH= HE

=> tứ giác EFGH là hình thoi.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 9 2018 lúc 6:12

Giải bài 76 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

* Xét tam giác ABC có E và F lần lượt là trung điểm của AB và BC

=> EF là đường trung bình của tam giác ABC

Giải bài 76 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

* Tương tự tam giác ADC có HG là đường trung bình nên:

Giải bài 76 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

Từ (1) và (2) suy ra: EF // HG và EF = HG

=> tứ giác EFGH là hình bình hành.

Lại có: EF // AC và BD ⊥ AC nên BD ⊥ EF

EH // BD và EF ⊥ BD nên EF ⊥ EH

Nên Giải bài 76 trang 106 Toán 8 Tập 1 | Giải bài tập Toán 8

Hình bình hành EFGH có Ê = 90º nên là hình chữ nhật

Sách Giáo Khoa
Xem chi tiết
Thien Tu Borum
21 tháng 4 2017 lúc 16:11

Bài giải:

Ta có: EB = EA, FB = FA (gt)

nên EF là đường trung bình của ∆ABC.

Do đó EF // AC

HD = HA, GD = GC (gt)

nên HG là đường trung bình của ∆ADC.

Do đó HG // AC

Suy ra EF // HG (1)

Chứng minh tương tự EH // FC (2)

Từ (1) (2) ta được EFGH là hình bình hành.

Lại có EF // AC và BD ⊥ AC nên BD ⊥ EF

EH // BD và EF ⊥ BD nên EF ⊥ EH

nên ˆFEHFEH^ = 900

Hình bình hành EFGH có ˆEE^ = 900 nên là hình chữ nhật.


Nguyễn Đinh Huyền Mai
21 tháng 4 2017 lúc 16:18

Bài giải:

Ta có: EB = EA, FB = FA (gt)

nên EF là đường trung bình của ∆ABC.

Do đó EF // AC

HD = HA, GD = GC (gt)

nên HG là đường trung bình của ∆ADC.

Do đó HG // AC

Suy ra EF // HG (1)

Chứng minh tương tự EH // FC (2)

Từ (1) (2) ta được EFGH là hình bình hành.

Lại có EF // AC và BD ⊥ AC nên BD ⊥ EF

EH // BD và EF ⊥ BD nên EF ⊥ EH

nên ˆFEHFEH^ = 900

Hình bình hành EFGH có ˆEE^ = 900 nên là hình chữ nhật.

Nhất trên đời
11 tháng 11 2017 lúc 11:47

Bài giải:

Ta có: EB=EA,FB=FAEB=EA,FB=FA (gt)

nên EFEF là đường trung bình của ΔABC∆ABC.

Do đó EF//ACEF//AC

HD=HA,GD=GCHD=HA,GD=GC (gt)

nên HGHG là đường trung bình của ΔADC∆ADC.

Do đó HG//ACHG//AC

Suy ra EF//HGEF//HG (1)

Chứng minh tương tự EH//FGEH//FG (2)

Từ (1) (2) ta được EFGHEFGH là hình bình hành.

Lại có EF//ACEF//ACBD⊥ACBD⊥AC nên BD⊥EFBD⊥EF

EH//BDEH//BDEF⊥BDEF⊥BD nên EF⊥EHEF⊥EH

nên ˆFEH=900FEH^=900

Hình bình hành EFGHEFGHˆE=900E^=900 nên là hình chữ nhật.


yeu

Tran Thi Hang
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Thien Tu Borum
21 tháng 4 2017 lúc 16:10

Bài giải:

Bốn tam giác vuông EAH, EBF, GDH, GCF có:

AE = BE = DG = CG

( = 1212AB = 1212CD)

HA = FB = DH = CF

( = 1212AD = 1212BC)

Nên ∆EAH = ∆EBF = ∆GDH = ∆GCF (c.g.c)

Suy ra EH = EF = GH = GF

Vậy EFGH là hình thoi (theo định nghĩa)

Nguyễn Đinh Huyền Mai
21 tháng 4 2017 lúc 16:19

Bốn tam giác vuông EAH, EBF, GDH, GCF có:

AE = BE = DG = CG

( = 1212AB = 1212CD)

HA = FB = DH = CF

( = 1212AD = 1212BC)

Nên ∆EAH = ∆EBF = ∆GDH = ∆GCF (c.g.c)

Suy ra EH = EF = GH = GF

Vậy EFGH là hình thoi (theo định nghĩa)

Võ Đông Anh Tuấn
Xem chi tiết
Võ Đông Anh Tuấn
21 tháng 3 2016 lúc 12:04

Ta có: EB = EA, FB = FA (gt)

nên EF là đường trung bình của ∆ABC.

Do đó EF // AC

HD = HA, GD = GC (gt)

nên HG là đường trung bình của ∆ADC.

Do đó HG // AC

Suy ra EF // HG       (1)

Chứng minh tương tự EH // FC    (2)

Từ (1) (2) ta được EFGH là hình bình hành.

Lại có EF // AC và BD ⊥ AC nên BD ⊥ EF

EH // BD và EF ⊥ BD nên EF ⊥ EH

nên FEH = 900

Hình bình hành EFGH có  E = 900 nên là hình chữ nhật.

SKT_ Lạnh _ Lùng
21 tháng 3 2016 lúc 12:09

Ta có: EB = EA, FB = FA (gt)

nên EF là đường trung bình của ∆ABC.

Do đó EF // AC

HD = HA, GD = GC (gt)

nên HG là đường trung bình của ∆ADC.

Do đó HG // AC

Suy ra EF // HG       (1)

Chứng minh tương tự EH // FC    (2)

Từ (1) (2) ta được EFGH là hình bình hành.

Lại có EF // AC và BD ⊥ AC nên BD ⊥ EF

EH // BD và EF ⊥ BD nên EF ⊥ EH

nên FEH = 900

Hình bình hành EFGH có  E = 900 nên là hình chữ nhật.

 ai tích mình tích lại

Good Boy
21 tháng 3 2016 lúc 12:13

cái này hok từ đời nào òi bn dảnh ghê nhưng mk sẽ kick vì bn đã từng tl câu hỏi của mk hihihihi

Võ Đông Anh Tuấn
Xem chi tiết
Võ Đông Anh Tuấn
21 tháng 3 2016 lúc 12:03

Bốn tam giác vuông EAH, EBF, GDH, GCF có:

AE = BE = DG = CG

   ( 1/2 = AB = 1/2 CD)

HA = FB = DH = CF

( = 1/2AD =1/2 BC)

Nên ∆EAH = ∆EBF = ∆GDH = ∆GCF (c.g.c)

Suy ra EH = EF = GH = GF

Vậy EFGH là hình thoi (theo định nghĩa)

SKT_ Lạnh _ Lùng
21 tháng 3 2016 lúc 12:10

Bốn tam giác vuông EAH, EBF, GDH, GCF có:

AE = BE = DG = CG

   ( 1/2 = AB = 1/2 CD)

HA = FB = DH = CF

( = 1/2AD =1/2 BC)

Nên ∆EAH = ∆EBF = ∆GDH = ∆GCF (c.g.c)

Suy ra EH = EF = GH = GF

Vậy EFGH là hình thoi (theo định nghĩa)

 ai tích mình tích lại

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
30 tháng 6 2017 lúc 14:11

Hình thoi