Chứng minh rằng : Nếu abc=1 thì \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\)
Chứng minh rằng :
Nếu abc=1 thì \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\)
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{ac}{abc+ac+c}+\frac{abc}{abc^2+abc+ac}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)
Chứng minh rằng nếu (a2-bc)(b-abc)=(b2-ac)(a-abc)= các số a,b,c,a-b khác 0 thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=a+b+c\)
Chứng tỏ rằng nếu abc=1 thì\(\frac{a}{ab+a+1}\)+\(\frac{b}{bc+b+1}\)+\(\frac{c}{ac+c+1}\)=1
Chứng minh rằng:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\) biết abc=1
Thay abc = 1 vào biểu thức ta có
\(\frac{a.abc}{ab+abc.a+abc}+\frac{b}{bc+b.acb+abc}+\frac{c}{ac+c+1}\)
= \(\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+ab^2c+abc}+\frac{c}{ac+c+1}\)
= \(\frac{a^2bc}{ab\left(ac+c+1\right)}+\frac{b}{b\left(ac+c+1\right)}+\frac{c}{ac+c+1}\)
= \(\frac{ac}{\left(ac+c+1\right)}+\frac{1}{\left(ac+c+1\right)}+\frac{c}{ac+c+1}\)
= \(\frac{ac+c+1}{ac+c+1}\)
= 1 (đpcm)
Nếu có gì không hiểu nhớ nt cho mình nha
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{abc}{a\cdot abc+abc+ab}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{a+1+ab}\)
\(=\frac{ab+a+1}{ab+a+1}=1\)
Cho a,b,c>0;abc=1. Chứng minh rằng : \(\frac{ab}{a^4+b^4+ab}+\frac{bc}{b^4+c^4+bc}+\frac{ac}{c^4+a^4+ac}\)≤1
Ta chứng minh được
\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
\(\Rightarrow P\le\sum\frac{ab}{ab\left(a^2+b^2\right)+ab}=\sum\frac{1}{a^2+b^2+1}\)
Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)
Ta lại chứng minh được:
\(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\)
\(\Rightarrow P\le\sum\frac{1}{x^3+y^3+1}\le\sum\frac{xyz}{xy\left(x+y\right)+xyz}=\sum\frac{z}{x+y+z}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Đây là bài thi vào 10 của Thanh Hóa thì phải
Chứng minh rằng:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\) biết abc=1
Em xem phần trả lời của bạn Giang nhé Câu hỏi của Vu Hoang - Toán lớp 8 - Học toán với OnlineMath
1 cách khác:
Đặt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\Rightarrow abc=1\left(TMGT\right)\)
Khi đó:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(=\frac{1}{b+1+\frac{1}{a}}+\frac{1}{c+1+\frac{1}{b}}+\frac{1}{a+1+\frac{1}{c}}\)
\(=\frac{1}{\frac{y}{z}+1+\frac{y}{x}}+\frac{1}{\frac{z}{x}+1+\frac{z}{y}}+\frac{1}{\frac{x}{y}+1+\frac{x}{z}}\)
\(=\frac{xz}{xy+yz+zx}+\frac{xy}{xy+yz+zx}+\frac{yz}{xy+yz+zx}=\frac{xy+yz+zx}{xy+yz+zx}=1\)
Chứng minh rằng: \(a+b+c=ab+bc+ac=abc\ne0\)
và \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\pm2\)
Chứng minh rằng nếu \(^2a\)=1 thì \(\frac{a}{ab+a+1}\)+\(\frac{b}{bc+b+1}\)+\(\frac{c}{ac+c+1}\)=1
Ta có : \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{abc}{ab^2c+abc+bc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)
\(=\frac{1}{b+bc+1}+\frac{b}{b+bc+1}+\frac{bc}{b+bc+1}=\frac{b+bc+1}{b+bc+1}=1\)
Vậy ta có điều phải chứng minh.
Lưu ý : abc = 1
Chứng minh rằng:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\) biết abc =1
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{abc}{aabc+abc+ab}=\)
\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}=1\)
Thay \(abc=1\) vào biểu thức ta có :
\(\frac{a.abc}{ab+abc.a+abc}+\frac{b}{bc+b.acb+abc}+\frac{c}{ac+c+1}\)
\(=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+ab^2c+abc}+\frac{c}{ac+c+1}\)
\(=\frac{a^2bc}{ab\left(ac+c+1\right)}+\frac{b}{b\left(ac+c+1\right)}+\frac{c}{ac+c+a}\)
\(=\frac{ac}{\left(ac+c+1\right)}+\frac{1}{\left(ac+c+1\right)}+\frac{c}{ac+c+1}\)
\(=\frac{ac+c+1}{ac+c+1}\)
\(=1\left(đpcm\right)\)
Chúc bạn học tốt !!!