Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Agami Raito

Cho a,b,c>0;abc=1. Chứng minh rằng : \(\frac{ab}{a^4+b^4+ab}+\frac{bc}{b^4+c^4+bc}+\frac{ac}{c^4+a^4+ac}\)≤1

Nguyễn Việt Lâm
20 tháng 6 2019 lúc 16:19

Ta chứng minh được

\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

\(\Rightarrow P\le\sum\frac{ab}{ab\left(a^2+b^2\right)+ab}=\sum\frac{1}{a^2+b^2+1}\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

Ta lại chứng minh được:

\(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\)

\(\Rightarrow P\le\sum\frac{1}{x^3+y^3+1}\le\sum\frac{xyz}{xy\left(x+y\right)+xyz}=\sum\frac{z}{x+y+z}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Đây là bài thi vào 10 của Thanh Hóa thì phải


Các câu hỏi tương tự
Icarus Chune
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Nguyễn Tiến Tành
Xem chi tiết
Nishimiya shouko
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
Xem chi tiết
Lê Đình Quân
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết
Agami Raito
Xem chi tiết