Cho a,b,c là các số thực dương thỏa mãn abc=1.Chứng minh rằng:
\(\frac{ab}{a^4+b^4+ab}+\frac{bc}{b^4+c^4+bc}+\frac{ca}{c^4+a^4+ca}\le1\)
Cho các số thực dương a,b,c thỏa mãn abc=1. Chứng minh rằng :
\(\frac{ab}{a^4+b^4+ab}\)+\(\frac{bc}{b^4+c^4+bc}\)+\(\frac{ca}{c^4+a^4+ca}\) \(\le\) 1.
Cho các số thực dương a,b,c thỏa mãn abc=1.CMR: \(\frac{ab}{a^4+b^4+1}+\frac{ac}{a^4+c^4+1}+\frac{bc}{b^4+c^4+1}\le1\)
Cho các số thực dương a, b, c > 0 thỏa mãn \(a^2+b^2+c^2=3\)
Chứng minh rằng \(\frac{1}{4-\sqrt{ab}}+\frac{1}{4-\sqrt{bc}}+\frac{1}{4-\sqrt{ca}}\le1\)
Cho x,y,z là các số thực dương thỏa mãn a+b+c=1. Chứng minh rằng :
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{1}{4}\left(1+\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\)
Cho các số thực dương a,b,c thỏa mãn abc=1.Chứng minh rằng:
\(\frac{1}{\sqrt{a^4-a^3+ab-2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4+c^3+ac+2}}\le\sqrt{3}\)
cho a,b,c là các số thực dương thỏa mãn abc=8. Chứng minh
\(\frac{a}{ca+4}+\frac{b}{ab+4}+\frac{c}{bc+4}\le\frac{1}{16}\left(a^2+b^2+c^2\right)\)
cho a,b,c là các số thực dương thỏa mãn a+b+c=1.chứng minh rằng \(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}\)
Cho a,b,c>0;abc=1. Chứng minh rằng : \(\frac{ab}{a^4+b^4+ab}+\frac{bc}{b^4+c^4+bc}+\frac{ac}{c^4+a^4+ac}\)≤1