Những câu hỏi liên quan
Nguyễn Thị Mỹ Lệ
Xem chi tiết
Ryan Nguyễn
Xem chi tiết
alibaba nguyễn
1 tháng 12 2016 lúc 14:37

Ta đặt \(\hept{\begin{cases}x+z=a\\y+z=b\end{cases}\Rightarrow ab=1}\)

\(BĐT\Leftrightarrow\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}\ge4\)

Ta có

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{\left(a-\frac{1}{a}\right)^2}+a^2+\frac{1}{a^2}\)

\(=\frac{1}{\left(a-\frac{1}{a}\right)^2}+\left(a-\frac{1}{a}\right)^2+2\)

\(\ge2+2=4\)

Bình luận (0)
Mạc Thu Hà
19 tháng 2 2017 lúc 8:12

bạn chưa chỉ ra dấu bằng xảy ra khi nào

Bình luận (0)
Nguyễn Ngọc Lan
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 5 2020 lúc 12:46

Đặt \(\left\{{}\begin{matrix}x-y=a\\x-z=b\end{matrix}\right.\) \(\Rightarrow z-y=a-b\)\(ab=1\)

\(VT=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a-b\right)^2}=\frac{a^2+b^2}{a^2b^2}+\frac{1}{\left(a-b\right)^2}\)

\(VT=a^2+b^2+\frac{1}{\left(a-b\right)^2}=\left(a-b\right)^2+\frac{1}{\left(a-b\right)^2}+2ab=\left(a-b\right)^2+\frac{1}{\left(a-b\right)^2}+2\)

\(VT\ge2\sqrt{\frac{\left(a-b\right)^2}{\left(a-b\right)^2}}+2=4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-y\right)\left(x-z\right)=1\\\left(y-z\right)^2=1\end{matrix}\right.\)

Bình luận (0)
Nguyễn Nhật Minh
Xem chi tiết
Mr Lazy
9 tháng 8 2016 lúc 13:26

\(\hept{\begin{cases}x+z=a\\y+z=b\end{cases}}\)\(x-y=\left(x+z\right)-\left(y+z\right)=a-b\)

\(ab=1\Rightarrow b=\frac{1}{a}\)

\(A=VT=\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{\left(a-\frac{1}{a}\right)^2}+\frac{1}{a^2}+a^2\)

\(=\frac{a^2}{\left(a^2-1\right)^2}+a^2+\frac{1}{a^2}\)

\(t=a^2>0\)

\(A=\frac{t}{\left(t-1\right)^2}+t+\frac{1}{t}\)

\(A-4=\frac{\left(t^2-3t+1\right)^2}{t\left(t-1\right)^2}\ge0\)

\(\Rightarrow A\ge4\)

Dấu bằng xảy ra khi \(t=a^2=\frac{3\pm\sqrt{5}}{2}\)\(\Leftrightarrow a=\sqrt{\frac{3\pm\sqrt{5}}{2}}\)

\(\Leftrightarrow\hept{\begin{cases}a=x+z=\sqrt{\frac{3+\sqrt{5}}{2}}\\b=y+z=\sqrt{\frac{3-\sqrt{5}}{2}}\end{cases}}\) và hoán vị còn lại 

Hệ trên có vô số nghiệm, chẳng hạn

\(\hept{\begin{cases}z=\frac{1}{10}\\x=\sqrt{\frac{3+\sqrt{5}}{2}}-\frac{1}{10}\\y=\sqrt{\frac{3-\sqrt{5}}{2}}-\frac{1}{10}\end{cases}}\)

Bình luận (0)
Nguyễn Nhật Minh
9 tháng 8 2016 lúc 11:05

giúp với.

Bình luận (0)
Nguyễn Thanh Vân
9 tháng 8 2016 lúc 11:19

Chào anh! Em mới học lớp 7 nên không biết làm. Nếu là toán lớp 9 thì anh nên đăng ký tài khoản ở h, sẽ có câu trả lời nhanh hơn đấy. Chúc anh học tốt!

Bình luận (0)
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 4 2019 lúc 23:02

Đặt \(\left\{{}\begin{matrix}x-y=a\\z-x=b\\y-z=c\end{matrix}\right.\) đề bài trở thành \(\left\{{}\begin{matrix}abc\ne0\\a+b+c=0\\ab=-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}c=-\left(a+b\right)\\b=-\frac{1}{a}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{1}{c^2}=\frac{1}{\left(a+b\right)^2}\\b^2=\frac{1}{a^2}\end{matrix}\right.\)

Ta cần chứng minh \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge4\)

\(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}=\frac{1}{a^2}+a^2+\frac{1}{\left(a-\frac{1}{a}\right)^2}\)

\(P=\left(a-\frac{1}{a}\right)^2+\frac{1}{\left(a-\frac{1}{a}\right)^2}+2\ge2\sqrt{\left(a-\frac{1}{a}\right)^2.\frac{1}{\left(a-\frac{1}{a}\right)^2}}+2=4\) (đpcm)

Bình luận (0)
Trần Mai Ngọc
Xem chi tiết
ST
13 tháng 8 2018 lúc 18:22

Áp dụng BĐT cauchy schawrz dạng engel ta có:

\(\frac{\left(y+z\right)^2}{x}+\frac{\left(x+z\right)^2}{y}+\frac{\left(x+y\right)^2}{z}\ge\frac{\left(y+z+x+z+x+y\right)^2}{x+y+z}=\frac{4\left(x+y+z\right)^2}{x+y+z}=4\left(x+y+z\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

Bình luận (0)
Doraemon
3 tháng 9 2018 lúc 8:14

Áp dụng BĐT cauchy schawrz dạng engel, ta có:

\(\frac{\left(y+z\right)^2}{x}+\frac{\left(x+z\right)^2}{y}+\frac{\left(x+y\right)^2}{z}\ge\frac{\left(y+z+x+z+x+y\right)^2}{x+y+z}=\frac{4\left(x+y+z\right)^2}{x+y+z}=4\left(x+y+z\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

Bình luận (0)
Phan Nghĩa
30 tháng 7 2020 lúc 20:07

Áp dụng bất đẳng thức Svacxo ta có : 

\(\frac{\left(y+z\right)^2}{x}+\frac{\left(x+z\right)^2}{y}+\frac{\left(x+y\right)^2}{z}\ge\frac{\left(y+z+x+z+x+y\right)^2}{x+y+z}\)

\(=\frac{\left(2x+2y+2z\right)^2}{x+y+z}=\frac{\left[2\left(x+y+z\right)\right]^2}{x+y+z}=\frac{4\left(x+y+z\right)^2}{x+y+z}=4\left(x+y+z\right)\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z\)

Vậy ta có điều phải chứng minh

Bình luận (0)
 Khách vãng lai đã xóa
Hiếu Trần
Xem chi tiết
tth_new
4 tháng 8 2018 lúc 8:16

Ghi chú: Này, mình mới lớp 6, nên giải chưa biết chắc là đúng hay sai nên lỡ có sai thì bạn đừng trách mình nhé!

Đặt \(A=\frac{x}{y\left(z+1\right)}+\frac{y}{z\left(x+1\right)}+\frac{z}{x\left(y+1\right)}\le\frac{9}{4}\)(Sửa đề)

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a,b dương và x + y + z = 1,ta có:

\(\frac{4}{y\left(z+1\right)}=\frac{4}{y\left(z+x+y+z\right)}=\frac{4}{y\left(\left(z+x\right)+\left(z+y\right)\right)}\le\frac{4}{y}\left(\frac{1}{z+x}+\frac{1}{z+y}\right)\)

Nhân hai vế với số dương xy, ta được:

\(\frac{4xy}{y\left(z+1\right)}\le\frac{4xy}{y}\left(\frac{1}{z+x}+\frac{1}{z+y}\right)\). Do đó:

\(4A=\frac{4xy}{y\left(z+1\right)}+\frac{4yz}{z\left(x+1\right)}+\frac{4zx}{x\left(y+1\right)}\)

\(\le\frac{4xy}{y}\left(\frac{1}{z+x}+\frac{1}{z+y}\right)+\frac{4yz}{z}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{4zx}{x}\left(\frac{1}{y+z}+\frac{1}{y+z}\right)\)

\(=4x\left(\frac{1}{z+x}+\frac{1}{z+y}\right)+4y\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+4z\left(\frac{1}{y+z}+\frac{1}{y+z}\right)\)

\(=\frac{4x}{z+x}+\frac{4x}{z+y}+\frac{4y}{x+y}+\frac{4y}{x+z}+\frac{4z}{y+z}+\frac{4z}{y+z}\)

\(\Rightarrow4A\le\frac{4x+4y}{z+x}+\frac{4y+4z}{z+y}+\frac{4z+4x}{x+y}=x+y+z=9\)

Do : \(4A\le9\)nên \(A< \frac{9}{4}\)

Bình luận (0)
Vinh Lê Thành
Xem chi tiết
Thanh Tùng DZ
28 tháng 12 2019 lúc 9:01

BĐT cần chứng minh tương đương với : \(\frac{\left(x+z\right)^2}{xz}\ge\frac{y\left(x+z\right)}{xz}+\frac{x+z}{y}\)

\(\Leftrightarrow\frac{x+z}{xz}\ge\frac{y}{xz}+\frac{1}{y}\Leftrightarrow y\left(x+z\right)\ge y^2+xz\)

\(\Leftrightarrow y^2-y\left(x+z\right)+xz\le0\Leftrightarrow\left(y-x\right)\left(y-z\right)\le0\) ( luôn đúng vì \(z\ge y\ge x>0\))

Vậy BĐT đã được chứng minh khi x = y = z

Bình luận (0)
 Khách vãng lai đã xóa
KCLH Kedokatoji
Xem chi tiết
tth_new
20 tháng 10 2020 lúc 15:54

1111111111111111111

\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)

Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)

Là xong.

Bình luận (0)
 Khách vãng lai đã xóa