Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 13:42

a) Ta có:

\(\left. \begin{array}{l}\left( Q \right)\parallel \left( R \right)\\\left( {ACC'} \right) \cap \left( Q \right) = B{B_1}\\\left( {ACC'} \right) \cap \left( R \right) = CC'\end{array} \right\} \Rightarrow B{B_1}\parallel CC' \Rightarrow \frac{{AB}}{{BC}} = \frac{{A{B_1}}}{{{B_1}C'}}\left( 1 \right)\)

b) Ta có:

\(\left. \begin{array}{l}\left( P \right)\parallel \left( Q \right)\\\left( {AA'C'} \right) \cap \left( Q \right) = B{B_1}\\\left( {AA'C'} \right) \cap \left( P \right) = AA'\end{array} \right\} \Rightarrow B{B_1}\parallel AA' \Rightarrow \frac{{A{B_1}}}{{{B_1}C'}} = \frac{{A'B'}}{{B'C'}}\left( 2 \right)\)

c) Từ (1) và (2) suy ra \(\frac{{AB}}{{BC}} = \frac{{A'B'}}{{B'C'}} \Rightarrow \frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} = \frac{{AB + BC}}{{A'B' + B'C'}} = \frac{{AC}}{{A'C'}}\)

Vậy \(\frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} = \frac{{AC}}{{A'C'}}\).

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 7 2023 lúc 0:09

Hai đường thẳng a, b không có điểm chung.

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2023 lúc 0:10

Gọi (R) là mặt phẳng chứa a và (R)//(Q)

(Q)//(R)

\(\left(P\right)\cap\left(Q\right)=a'\)

\(\left(P\right)\cap\left(R\right)=a\)

Do đó: a//a'

mà IJ vuông góc a

nên JI vuông góc a'

\(\left(P\right)\perp\left(Q\right)\)

\(\left(P\right)\cap\left(Q\right)=a'\)

\(JI\perp a\)

Do đó: JI vuông góc (Q)

=>IJ vuông góc b

Bùi Nguyên Khải
21 tháng 8 2023 lúc 9:24

tham khảo:

Gọi (R) là mặt phẳng chứa a song song với (Q).

(P) cắt hai mặt phẳng song song tại a và a' nên a//a'

Trong mặt phẳng (P), IJ⊥a,a//a′ nên IJ⊥a′
Ta có: (P)⊥(Q), (P) cắt (Q) tại a', IJ⊥a′ nên IJ⊥(P)
Suy ra IJ⊥b
 

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
26 tháng 5 2017 lúc 11:01

a) Đúng

b) Đúng

c) Sai

d) Sai

e) Sai

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 13:41

a) Qua điểm \(A\), ta vẽ được duy nhất một đường thẳng \(a\) song song với đường thẳng \(a'\).

Qua điểm \(A\), ta vẽ được duy nhất một đường thẳng \(b\) song song với đường thẳng \(b'\).

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}a\parallel a'\\a' \subset \left( Q \right)\end{array} \right\} \Rightarrow a\parallel \left( Q \right)\\\left. \begin{array}{l}b\parallel b'\\b' \subset \left( Q \right)\end{array} \right\} \Rightarrow b\parallel \left( Q \right)\end{array}\)

b) Ta có:

\(\left. \begin{array}{l}a\parallel \left( Q \right)\\b\parallel \left( Q \right)\\a,b \subset mp\left( {a,b} \right)\end{array} \right\} \Rightarrow mp\left( {a,b} \right)\parallel \left( Q \right)\)

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 12:50

Vì \(O \in \left( \alpha  \right)\) nên \(O\) là hình chiếu của chính nó lên mặt phẳng \(\left( \alpha  \right)\) theo phương \(d\).

Vì ba điểm \(O,A,B\) thẳng hàng nên ba điểm \(O,A',B'\) thẳng hàng.

\(AA'\parallel BB' \Rightarrow \frac{{AB}}{{OA}} = \frac{{A'B'}}{{OA'}} \Leftrightarrow \frac{{A'B'}}{{AB}} = \frac{{OA'}}{{OA}}\)

a) Để \(A'B' = AB\) thì \(OA' = OA\).

Vậy đường thẳng \(d\) song song với \(AA'\) và \(OA' = OA\).

b) Để \(A'B' = 2AB\) thì \(OA' = 2OA\).

Vậy đường thẳng \(d\) song song với \(AA'\) và \(OA' = 2OA\).

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 13:29

a) Ta có:

\(\left. \begin{array}{l}b \subset \left( P \right)\\b \subset \left( Q \right)\end{array} \right\} \Rightarrow b = \left( P \right) \cap \left( Q \right)\)

Vậy \(b\) là giao tuyến của hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\).

b) Ta có:

\(\left. \begin{array}{l}M \in a\\a \subset \left( Q \right)\end{array} \right\} \Rightarrow M \in \left( Q \right)\)

Lại có: \(M \in \left( P \right)\)

Do đó điểm \(M\) nằm trên giao tuyến của hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\). Vậy \(M \in b\).

Vậy \(M\) là một điểm chung của hai đường thẳng \(a\) và \(b\), trái với giả thiết \(a\parallel b\).

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 12:43

a) Ta có:

\(\left. \begin{array}{l}AA'\parallel DD'\\DD' \subset \left( {CC'D'D} \right)\end{array} \right\} \Rightarrow AA'\parallel \left( {CC'D'D} \right)\)

\(\left. \begin{array}{l}AB\parallel C{\rm{D}}\\C{\rm{D}} \subset \left( {CC'D'D} \right)\end{array} \right\} \Rightarrow AB\parallel \left( {CC'D'D} \right)\)

\(\left. \begin{array}{l}AA'\parallel \left( {CC'D'D} \right)\\AB\parallel \left( {CC'D'D} \right)\\AA',AB \subset \left( {AA'B'B} \right)\end{array} \right\} \Rightarrow \left( {AA'B'B} \right)\parallel \left( {CC'D'D} \right)\)

\(\left. \begin{array}{l}\left( {AA'B'B} \right)\parallel \left( {CC'D'D} \right)\\\left( P \right) \cap \left( {AA'B'B} \right) = A'B'\\\left( P \right) \cap \left( {CC'D'D} \right) = C'D'\end{array} \right\} \Rightarrow A'B'\parallel C'D'\left( 1 \right)\)

\(\left. \begin{array}{l}AD\parallel BC\\BC \subset \left( {BB'C'C} \right)\end{array} \right\} \Rightarrow AD\parallel \left( {BB'C'C} \right)\)

\(\left. \begin{array}{l}AA'\parallel BB'\\BB' \subset \left( {BB'C'C} \right)\end{array} \right\} \Rightarrow AA'\parallel \left( {BB'C'C} \right)\)

\(\left. \begin{array}{l}AA'\parallel \left( {BB'C'C} \right)\\AD\parallel \left( {BB'C'C} \right)\\AA',AD \subset \left( {AA'D'D} \right)\end{array} \right\} \Rightarrow \left( {AA'D'D} \right)\parallel \left( {BB'C'C} \right)\)

\(\left. \begin{array}{l}\left( {AA'D'D} \right)\parallel \left( {BB'C'C} \right)\\\left( P \right) \cap \left( {AA'D'D} \right) = A'D'\\\left( P \right) \cap \left( {BB'C'C} \right) = B'C'\end{array} \right\} \Rightarrow A'D'\parallel B'C'\left( 2 \right)\)

Từ (1) và (2) suy ra \(A'B'C'D'\) là hình bình hành.

Gọi \(O = AC \cap B{\rm{D}},O' = A'C' \cap B'{\rm{D}}'\)

\( \Rightarrow O\) là trung điểm của \(AC,B{\rm{D}}\), \(O'\) là trung điểm của \(A'C',B'{\rm{D}}'\).

\(\left. \begin{array}{l}\left( {AA'B'B} \right)\parallel \left( {CC'D'D} \right)\\\left( {AA'C'C} \right) \cap \left( {AA'B'B} \right) = AA'\\\left( {AA'C'C} \right) \cap \left( {CC'D'D} \right) = CC'\end{array} \right\} \Rightarrow AA'\parallel CC'\)

\( \Rightarrow AA'C'C\) là hình thang

\(O\) là trung điểm của \(AC\)

\(O'\) là trung điểm của \(A'C'\)

\( \Rightarrow OO'\) là đường trung bình của hình thang \(AA'C'C\)

\( \Rightarrow AA' + CC' = 2OO'\left( 3 \right)\)

\(\left. \begin{array}{l}\left( {AA'B'B} \right)\parallel \left( {CC'D'D} \right)\\\left( {BB'D'D} \right) \cap \left( {AA'B'B} \right) = BB'\\\left( {BB'D'D} \right) \cap \left( {CC'D'D} \right) = DD'\end{array} \right\} \Rightarrow BB'\parallel DD'\)

\( \Rightarrow BB'D'D\) là hình thang

\(O\) là trung điểm của \(B{\rm{D}}\)

\(O'\) là trung điểm của \(B'D'\)

\( \Rightarrow OO'\) là đường trung bình của hình thang \(BB'D'D\)

\( \Rightarrow BB' + DD' = 2OO'\left( 4 \right)\)

Từ (3) và (4) suy ra \(AA' + CC' = BB' + DD'\left( { = 2OO'} \right)\).

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 13:47

loading...

a) Ta có:

\(\left. \begin{array}{l}d \subset \left( {AMNC} \right)\\d\parallel \left( \alpha  \right)\\\left( \alpha  \right) \cap \left( {AMNC} \right) = AC\end{array} \right\} \Rightarrow d\parallel AC \Rightarrow MN\parallel AC\)

Mà \(a\parallel NC \Rightarrow MA\parallel NC\)

\( \Rightarrow AMNC\) là hình bình hành.

b) Gọi \(\left( \beta  \right)\) là mặt phẳng chứa \(b\) và song song với \(a\), \(c = \left( \alpha  \right) \cap \left( \beta  \right)\)

Ta có:

\(\left. \begin{array}{l}NC\parallel a\\N \in b\end{array} \right\} \Rightarrow NC \subset \left( \beta  \right)\)

\( \Rightarrow C \in \left( \alpha  \right) \cap \left( \beta  \right) \Rightarrow C \in c\)

Vậy điểm \(C\) luôn luôn chạy trên đường thẳng \(c\) là giao tuyến của \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) cố định.

c) Trong mặt phẳng \(\left( \alpha  \right)\), kẻ \(AH \bot c\)

Vì \(c\) cố định nên \(AC \ge AH\)

\(AMNC\) là hình bình hành \( \Rightarrow MN = AC\)

Vậy \(MN \ge AH\)

Vậy \(MN\) nhỏ nhất khi \(C \equiv H\). Khi đó \(d\parallel AH\).