Thực hiện phép tính :
( x + y ) ( x^2 + 2xy + y^2 )
giải cách dễ hiểu nhất nhé
a) (x2 - 2x + 3 )( 1/2x - 5 )
b') (x2 - 2xy + y2 )(x - y )
Thực hiện phép tính ?
Giải chi tiết giúp mình nhé !
Thực hiện phép tính :
(x^2-2xy+2(y^2)).(x^2+2xy+2(y^2)
Ta có:
VT=(x2+y2)2−(2xy)2VT=(x2+y2)2−(2xy)2
=(x2+y2−2xy)(x2+y2+2xy)=(x2+y2−2xy)(x2+y2+2xy)
=(x−y)2(x+y)2=VP=(x−y)2(x+y)2=VP
⇒đpcm⇒đpcm
Thực hiện phép tính:
a/(x^2+y^2-2xy)+(x^2+y^2 +2xy)
b/(x^2+y^2-2xy) - (x^2+y^2+2xy)
a.
(x^2 + y^2 - 2xy) + (x^2 + y^2 + 2xy)
= x^2 + y^2 - 2xy + x^2 + y^2 + 2xy
= (x^2 + x^2) + (y^2 + y^2) + (2xy - 2xy)
= 2x^2 + 2y^2
b.
(x^2 + y^2 - 2xy) - (x^2 + y^2 + 2xy)
= x^2 + y^2 - 2xy - x^2 - y^2 - 2xy
= (x^2 - x^2) + (y^2 - y^2) - (2xy + 2xy)
= -4xy
Thực hiện phép tính
(2.x-1)(x2-2.x.y+3.y2)
Trình bày cách giải nhé, thank
Thực hiện phép tính: \(\dfrac{x}{{x + y}} + \dfrac{{2xy}}{{{x^2} - {y^2}}} - \dfrac{y}{{x + y}}\)
`x/(x+y) + (2xy)/(x^2-y^2) - y(x+y)`
`= (x(x-y))/(x^2-y^2) + (2xy)/(x^2-y^2) - (y(x-y))/(x^2-y^2)`
`= (x^2 - xy + 2xy - xy + y^2)/(x^2-y^2)`
`= (x^2+y^2)/(x^2-y^2)`
\(\dfrac{x}{x+y}+\dfrac{2xy}{x^2-y^2}-\dfrac{y}{x+y}\)
\(=\dfrac{x-y}{x+y}+\dfrac{2xy}{\left(x+y\right)\left(x-y\right)}\)
\(=\dfrac{\left(x-y\right)^2}{\left(x+y\right)\left(x-y\right)}+\dfrac{2xy}{\left(x+y\right)\left(x-y\right)}\)
\(=\dfrac{x^2-2xy+y^2+2xy}{\left(x+y\right)\left(x-y\right)}\)
\(=\dfrac{x^2+y^2}{x^2-y^2}\)
\(MTC:x^2-y^2=\left(x+y\right)\left(x-y\right)\\ =\dfrac{x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}+\dfrac{2xy}{x^2-y^2}-\dfrac{y\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}\\ =\dfrac{x\left(x-y\right)+2xy-y\left(x-y\right)}{x^2-y^2}\\ =\dfrac{x^2-xy+2xy-xy+y^2}{x^2-y^2}=\dfrac{x^2+y^2}{x^2-y^2}\)
thực hiện phép tính:
\(\left[\frac{2xy}{x^2-y^2}+\frac{x-y}{2x+2y}\right]:\frac{x+y}{2x}+\frac{x}{y-x}\)
Giúp mk nhé, đúng mk tick cho^^
\(=\left[\frac{2xy}{\left(x-y\right).\left(x+y\right)}+\frac{x-y}{2.\left(x+y\right)}\right]:\frac{x+y}{2x}+\frac{x}{y-x}\)
\(=\frac{4xy+\left(x-y\right).\left(x-y\right)}{2.\left(x-y\right).\left(x+y\right)}.\frac{2x}{x+y}+\frac{x}{y-x}\)
\(=\frac{x^2+2xy+y^2}{\left(x-y\right).\left(x+y\right)^2}.x+\frac{x}{y-x}\)
\(=\frac{x.\left(x+y\right)^2}{\left(x-y\right).\left(x+y\right)^2}+\frac{x}{y-x}\)
\(=\frac{x}{x-y}-\frac{x}{x-y}=0\)
Bạn giùm mik nhé, tks bạn nhiều (:
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4:
Thực hiện phép tính
x^2/[(x-y)^2(x+y)] - 2xy^2/(x^4-2x^2y^2+y^4)+y^2/[(x^2-y^2)(x+y)]
giúp mk với nhé
sáng mai nộp rồi
ai nhanh tay mk sẽ k cho
Bài 3 ( 3đ) : Thực hiện phép tính
\(\dfrac{y}{x-y}-\dfrac{x^3-xy^2}{x^2+y^2}.\left(\dfrac{x}{x^2-2xy+y^2}-\dfrac{y}{x^2-y^2}\right)\)
Ta có: \(\dfrac{y}{x-y}-\dfrac{x^3-xy^2}{x^2+y^2}\cdot\left(\dfrac{x}{x^2-2xy+y^2}-\dfrac{y}{x^2-y^2}\right)\)
\(=\dfrac{y}{x-y}-\dfrac{x\left(x^2-y^2\right)}{x^2+y^2}\cdot\left(\dfrac{x\left(x+y\right)}{\left(x-y\right)^2\cdot\left(x+y\right)}-\dfrac{y\cdot\left(x-y\right)}{\left(x-y\right)^2\cdot\left(x+y\right)}\right)\)
\(=\dfrac{y}{x-y}-\dfrac{x\left(x-y\right)\left(x+y\right)}{x^2+y^2}\cdot\dfrac{x^2+xy-xy+y^2}{\left(x-y\right)^2\left(x+y\right)}\)
\(=\dfrac{y}{x-y}-\dfrac{x\cdot\left(x^2+y^2\right)}{\left(x^2+y^2\right)\cdot\left(x-y\right)}\)
\(=\dfrac{y}{x-y}-\dfrac{x}{x-y}\)
\(=\dfrac{y-x}{x-y}=\dfrac{-\left(x-y\right)}{x-y}=-1\)