Cho A = ( 1/22 - 1).(1/32 -1).(1/42-1)....(1/1002 -1)
So sánh A với -1/2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
A=(1/22 - 1)*(1/32 - 1)*(1/42 - 1)(1/52 - 1)*...*(1/1002 - 1)
So sánh với -1/2
nani "Doge"
a) cho A=1/22+1/12+1/62+...+1/1002
CTR: A<1/2
b) cho P=1/22+1/32+1/42+...+1/20232
CTR: P không là số tự nhiên
c) cho C=1/32+1/52+1/72+...+1/2021+1/202322
CTR: C không là số tự nhiên
GIÚP MÌNH VỚI Ạ. MÌNH CẦN GẤP. CẢM ƠN MỌI NGƯỜI!
https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881
Cô làm rồi em nhá
a) cho A=1/22+1/12+1/62+...+1/1002
CTR: A<1/2
b) cho P=1/22+1/32+1/42+...+1/20232
CTR: P không là số tự nhiên
c) cho C=1/32+1/52+1/72+...+1/2021+1/202322
CTR: C không là số tự nhiên
GIÚP MÌNH VỚI Ạ. MÌNH CẦN GẤP. CẢM ƠN MỌI NGƯỜI!
CÔ NGUYỄN THỊ THƯƠNG HOÀI GIÚP EM VỚI Ạ
Câu a, xem lại đề bài
Câu b:
P = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)
Vì \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
\(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)
\(\dfrac{1}{4^2}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)
........................
\(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)
Cộng vế với vế ta có:
0< P < 1 - \(\dfrac{1}{2023}\) < 1
Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp
Câu c:
C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C
B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0
Cộng vế với vế ta có:
C+B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)+ \(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0
Mặt khác ta có:
1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)
Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)
chứng minh
1/22+1/32+1/42+1/52+...+1/1002 >3/4
A = ( 1/22 + 1 ) ( 1/32 - 1 ) ( 1 / 4 2 - 1 ) ( 1 / 52 - 1 ) ... ( 1 / 1002 - 1 )
mình đang cần gấp giúp mình với : <
M = 1002– 992 + 982 – 972 + … + 22 – 12;
N = (202+ 182 + 162 + … + 42 + 22) – (192 + 172 + 152 + … + 32 + 12);
P = (-1)n.(-1)2n+1.(-1)n+1.
a:
Số số hạng trong dãy M là:
(1002-12):10+1=100(số)
=>Sẽ có 50 cặp (1002;992); (982;972);....;(22;12) có hiệu bằng 10
\(M=1002-992+982-972+...+22-12\)
\(=\left(1002-992\right)+\left(982-972\right)+...+\left(22-12\right)\)
\(=10+10+...+10\)
=10*50=500
b: \(N=\left(202+182+...+42+22\right)-\left(192+172+...+32+12\right)\)
\(=\left(202-192\right)+\left(182-172\right)+...+\left(22-12\right)\)
=10+10+...+10
=10*10=100
Cho A=1/12+1/22+1/22+1/32+1/42+..........+ 1/502<2
so sánh hai số:
A=(2+1)(2^2+1)(2^4+1).((2^16+1) và B=2^32-1
A=1000^2+1003^2+1005^2+1006^2 và
B=1001^2+1002^2+1004^2+1007^2
Cho A = 1/22 + 1/32 + 1/42 + ... + 1/92.
CMR: 2/5 < A < 8/9.
Giải:
A=1/22+1/32+1/42+...+1/92
Ta có:
1/22<1/1.2
1/32<1/2.3
1/42<1/3.4
...
1/92<1/8.9
⇒A<1/1.2+1/2.3+1/3.4+...+1/8.9
A<1/1-1/2+1/2-1/3+1/3-1/4+...+1/8-1/9
A<1/1-1/9
A<8/9
Ta có:
1/22>1/2.3
1/32>1/3.4
1/42>1/4.5
...
1/92>1/9.10
⇒A>1/2.3+1/3.4+1/4.5+...+1/9.10
A>1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10
A>1/2-1/10
A>2/5
Vậy 2/5<A<8/9 (đpcm)
Chúc bạn học tốt!
B=1/22+1/42+1/62+... 1/1002
\(B=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
\(B=\dfrac{1}{2.2}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}\)
\(B=\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{100}\)
\(B=0+0+...+0\)
\(B=0\)