Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguoi Ngu
Xem chi tiết
Nguyễn Linh Chi
11 tháng 11 2018 lúc 9:30

\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0}\)

Tương tự \(\left(b+1\right)\left(b-2\right)\le0,\left(c+1\right)\left(c-2\right)\le0\)

=> (a+1)(a-2)+(b+1)(b-2)+(c+1)(c-2)\(\le\)0 => a2+b2+c2-(a+b+c)-6\(\le\)

=>a2+b2+c2 \(\le\)

Dấu "=" xảy ra <=> (a+1)(  a-2)=0, (b+1)(b-2)=0, (c+1)(c-2)=0 , a+b+c=0 <=> a=2, b=c=-1 và các hoán vị 

Diệp Nguyễn Thị Huyền
Xem chi tiết
Nguyễn Công Minh Hoàng
Xem chi tiết
Hồ Ann
Xem chi tiết
Hồ Ann
23 tháng 3 2023 lúc 20:42

Mình cần lời giải chi tiết ạ.

Levi Ackerman
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 6 2021 lúc 20:01

\(VT=1+\dfrac{1}{1+a}+\dfrac{2}{1+2b}-1=2\left(\dfrac{1}{2+2a}+\dfrac{1}{1+2b}\right)\)

\(VT\ge\dfrac{8}{3+2\left(a+b\right)}\ge\dfrac{8}{3+2.2}=\dfrac{8}{7}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=\dfrac{3}{4}\\b=\dfrac{5}{4}\end{matrix}\right.\)

loancute
Xem chi tiết
gãi hộ cái đít
21 tháng 5 2021 lúc 7:35

Ta có: \(P=ab+\dfrac{4}{ab}+4\ge2\sqrt{ab.\dfrac{4}{ab}+4}=8\)

Dấu '=' xảy ra <=> \(\left\{{}\begin{matrix}ab=2\\1\le a,b\le2\end{matrix}\right.\)

Lại có: \(1\le a\le2,1\le b\le2\)

\(\Rightarrow1\le ab\le4\Leftrightarrow\left(ab-1\right)\left(ab-4\right)\le0\Leftrightarrow\left(ab\right)^2\le5ab-4\)

\(\Rightarrow P=\dfrac{\left(ab\right)^2+4ab+4}{ab}\le\dfrac{5ab-4+4ab+4}{ab}=9\)

Dấu '=' xảy ra <=> \(\left[{}\begin{matrix}ab=1\\ab=4\end{matrix}\right.\) và \(1\le a,b\le2\) \(\Leftrightarrow\left[{}\begin{matrix}a=b=2\\a=b=1\end{matrix}\right.\)

Vậy \(Min_P=8\Leftrightarrow ab=2;1\le a,b\le2\)

\(Max_P=9\Leftrightarrow\left[{}\begin{matrix}a=b=1\\a=b=2\end{matrix}\right.\)

An Vy
Xem chi tiết
IS
1 tháng 4 2020 lúc 11:27

đặt \(t=ab+bc+ca\)

\(=>t=ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=3\)

mặt khác 

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(=>a^2+b^2+c^2=9-2\left(ab+bc+ca\right)\)

khi đó 

\(P=\frac{9-2t}{t}\)(zới t nhỏ hơn hoặc = 3)

xét \(f\left(t\right)=\frac{9-2t}{t}\left(t\le3\right)\)

\(f'\left(t\right)=-\frac{9}{t^2}< 0\)

=> f(t) N Biến \(\left(-\infty,3\right)\)

min f(t)=f(3)=1

koo tồn tại max\(f\left(t\right)\)

zậy minP=1 khi a=b=c=1

Khách vãng lai đã xóa
yeens
Xem chi tiết
Vô danh
Xem chi tiết
Trần Tuấn Hoàng
3 tháng 4 2022 lúc 21:31

Bài 3:

\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)

\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)

 

Trần Tuấn Hoàng
3 tháng 4 2022 lúc 21:08

-Tham khảo:

undefined

Trần Tuấn Hoàng
3 tháng 4 2022 lúc 21:12

-Tham khảo:

undefined