Tìm giá trị nhỏ nhất của biểu thức: A= (1+x)(1+1/y) +(1+y)(1+1/x) với x>0, y>0 thỏa mãn x^2 + y^2=1
cho x,y>0 thỏa mãn x+y=1.tìm giá trị lớn nhất,giá trị nhỏ nhất của các biểu thức: A= 1/x^2+y^2 +1/xy,B= 1/x^2+y^2+3/4xy
có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)
có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)
từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)
=>Min A=(1+\(\sqrt{2}\))^2
b, ta có : \(x+y=1=>2x+2y=2\)
\(B=\dfrac{1}{x^2+y^2}+\dfrac{3}{4xy}=\dfrac{4}{4x^2+4y^2}+\dfrac{6}{8xy}\)\(\ge\dfrac{\left(2+\sqrt{6}\right)^2}{\left(2x+2y\right)^2}\)
\(=\dfrac{\left(2+\sqrt{6}\right)^2}{2^2}=\dfrac{5+2\sqrt{6}}{2}\)=>\(B\ge\dfrac{5+2\sqrt{6}}{2}\)
=>\(MinB=\dfrac{5+2\sqrt{6}}{2}\)
cho x>0, y>0 thỏa mãn x^2+y^2 =1. Tìm giá trị nhỏ nhất của biểu thức A=-2xy/1+xy
Áp dụng bđt Cô-si \(1=x^2+y^2\ge2xy\)
\(\Rightarrow xy\le\frac{1}{2}\)
Ta có \(A=\frac{-2xy}{1+xy}\ge\frac{-\frac{2.1}{2}}{1+\frac{1}{2}}=-\frac{2}{3}\)
\("="\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)
Cho hai số thực x và y thỏa mãn x, y > 0 và xy = 1.
Tìm giá trị nhỏ nhất của biểu thức A = \(\dfrac{1}{(1+x)^2} + \dfrac{1}{(1+y)^2}\)
A>=1/(1+xy)=1/2
Dấu = xảy ra khi x=y=1
Cho 2 số thực x ; y thỏa mãn 0 < x ≤ 1 , 0 < y ≤ 1 và x + y = 3xy . Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = x2 + y2 - 4xy
Bài 1:Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=x^2+y^2/x^2+xy+4y^2 với x2+xy+4y^2 khác 0.Bài 2:Với x;y thỏa mãn điều kiện x^2+y^2=1.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=2(xy+y^2)/1+2x^2+2xy.Giúp mik nhé mai mik đi hc r
Cho x, y > 0 thỏa mãn x + y = 1. Tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{x}{\sqrt{1-x}}+\dfrac{y}{\sqrt[]{1-y}}\)
\(P=\dfrac{x}{\sqrt{x+y-x}}+\dfrac{y}{\sqrt{x+y-y}}=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\)
\(=\dfrac{x^2}{x\sqrt{y}}+\dfrac{y^2}{y\sqrt{x}}\ge\dfrac{\left(x+y\right)^2}{x\sqrt{y}+y\sqrt{x}}=\dfrac{\left(x+y\right)^2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\)
\(\ge\dfrac{\left(x+y\right)^2}{\dfrac{x+y}{2}.\left(1.\sqrt{x}+1.\sqrt{y}\right)}\ge\dfrac{\left(x+y\right)^2}{\dfrac{x+y}{2}.\sqrt{\left(1^2+1^2\right)\left(x+y\right)}}=\dfrac{1}{\dfrac{1}{2}\sqrt{2}}=\sqrt{2}\)
"=" khi x = y = 1/2
Giá trị nhỏ nhất của biểu thức A=|x+1|^3+4 là..............
Biết x;y thỏa mãn |x+1|+|x-y+2|=0. Khi đó x^2+y^2+1 là..............
Giá trị lớn nhất của biểu thức A=6/|x+1|+3 là.............
Với n là số tự nhiên khác 0, khi đó giá trị biểu thức A=(1/4)^n-(1/2)^n/(1/2)^n-1 -(1/2)^n+2012 là..............
Cho x,y, z khác 0 và x-y-z=0. Tính giá trị biểu thức (1-z/x).(1-x/y).(1+y/z) là..................
AI TL GIÙM ĐI!!!!!!!!!!1 CẦN GẤP, NẾU ĐÚNG SẼ TICK CHO (KO CẦN TL HẾT, CHỈ CẦN ĐÚNG LÀ ĐC RỒI!!)
Với x; y >0 thỏa mãn x+y = 4/3. Tìm giá trị nhỏ nhất của biểu thức P= 3/x +1/3y
\(P=\dfrac{3}{x}+\dfrac{1}{3y}=\dfrac{3}{x}+\dfrac{\dfrac{1}{3}}{y}\ge\dfrac{\left(\sqrt{3}+\dfrac{1}{\sqrt{3}}\right)^2}{x+y}=\dfrac{\dfrac{16}{3}}{\dfrac{4}{3}}=4\)
\(min_P=4\Leftrightarrow x=1;y=\dfrac{1}{3}\)
Cho x>0, y>0 thỏa mãn x2+y2=1. Tìm giá trị nhỏ nhất của biểu thức A=\(\frac{-2xy}{1+xy}\)