Tìm A,biết: (2,275x a+2,743x a)-2020=2021x(37x98-49x74)
giúp em với ạ
tìm x biết 2021x(x-2020)-x+2020=0 mn giúp em với
\(2021x\left(x-2020\right)-x+2020=0\)
\(\Rightarrow2021x\left(x-2020\right)-\left(x-2020\right)=0\)
\(\Rightarrow\left(x-2020\right)\left(2021x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2020=0\\2021x-1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2021}\end{matrix}\right.\)
Ta có: \(2021x\left(x-2020\right)-x+2020=0\)
\(\Leftrightarrow\left(x-2020\right)\left(2021x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2021}\end{matrix}\right.\)
Các bạn giúp mình với ạ!
Cho x = 2020, tính giá trị của biểu thức: x^2020 - 2021x^2019 + 2021x^2018 - 2021x^2017 + ... + 2021x^2 - 2021x +1
x = 2020 => 2021 = x + 1
x2020 - 2021x2019 + 2021x2018 - 2021x2017 + ... + 2021x2 - 2021x + 1
= x2020 - ( x + 1 )x2019 + ( x + 1 )x2018 - ( x + 1 )x2017 + ... + ( x + 1 )x2 - ( x + 1 )x + 1
= x2020 - x2020 - x2019 + x2019 + x2018 - x2018 - x2017 + ... + x3 + x2 - x2 - x + 1
= -x + 1 = -2020 + 1 = -2019
Vậy giá trị của biểu thức = -2019
các bạn ơi giúp mk vs
tìm B biết:
B=x^5 - 2021x^4 + 2021x^3 - 2021x^2 + 2021x - 1000 tại x=2020
Tính giá trị của biểu thức A= x2021-2021x2020+2021x2019-2021x2018+....-2021x2+2021x-2021 khi x=2020
Ta có x = 2020
=> x + 1 = 2021
A = x2021 - 2021x2020 + .... + 2021x - 2021
= x2021 - (x + 1)x2020 + .... + (x + 1)x - (x + 1)
= x2021 - x2021 - x2020 + .... + x2 + x - x + 1
= 1
Vậy A = 1
Ta có : \(x=2020\Rightarrow x+1=2021\)
\(A=x^{2021}-\left(x+1\right)x^{2020}+\left(x+1\right)x^{2019}-\left(x+1\right)x^{2018}+...-\left(x+1\right)x^2+\left(x+1\right)x-2021\)
= x2021 - x2021 - x2020 + x2020 + x2019 - x2019 - x2018 + ... - x3 - x2 + x2 + x - 2021 = x - 2021
mà x = 2020 hay 2020 - 2021 = -1
Vậy với x = 2020 thì A = -1
Tìm giá trị nhỏ nhất của biểu thức A = \(\dfrac{x^2-2x+2020}{2021x^2}\) với x khác 0
A = \(\dfrac{x^2-2x+2020}{2021x^2}\)
= \(\dfrac{2020x^2-2.2020.x+2020^2}{2021.2020x^2}\)
\(=\dfrac{2019x^2}{2021.2020x^2}+\dfrac{x^2-2.2020.x+2020^2}{2021.2020x^2}\)
= \(\dfrac{2019}{2021.2020}+\dfrac{\left(x-2020\right)^2}{2021.2020x^2}\ge\dfrac{2019}{2021.2020}\)
Dấu "=" xảy ra <=> x - 2020 = 0
<=> x = 2020
Vậy minA = \(\dfrac{2019}{2021.2020}\)đạt được tại x = 2020
tìm nghiệm của đa thức A(X)= x^2 -2021x +2020
Đặt \(A\left(x\right)=x^2-2021x+2020=0\)
\(\Leftrightarrow x^2-2020x-x+2020=0\)
\(\Leftrightarrow x\left(x-1\right)-2020\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-2020\right)\left(x-1\right)=0\Leftrightarrow x=\orbr{\begin{cases}x=2020\\x=1\end{cases}}\)
Vậy nghiệm của phương trình là x = 1 ; x = 2020
Ta có: a = 2020 => 2021 = x + 1
f(2020) = x2014 - (x + 1) . x2013 + (x + 1) . x2012 - ... + (x + 1) . x2 - (x + 1) . x - 1
= x2014 - x2014 + x2013 + x2013 + x2012 - ... + x3 + x2 - x2 + x - 1
= x - 1 = 2020 - 1 = 2019
Vậy f(2020) = 2019
Cho x = 2020, tính giá trị:
P(x) = x^2021-2021x^2020+2021x^2019-2021x^2018+...+2021x-2020
x=2020 nên x+1=2021
\(P\left(x\right)=x^{2021}-x^{2020}\left(x+1\right)+x^{2019}\left(x+1\right)-....+x\left(x+1\right)-2020\)
\(=x^{2021}-x^{2021}-x^{2020}+x^{2020}-...+x^2+x-2020\)
=x-2020=0
Chứng tỏ phân số A=x+1/2021x+2020 là phân số tối giản với mọi số nguyên x
Mn cứu mk vs, giải giúp mk nhanh nhé mk đg cần gấp
con cặc là kết quả bạn nhé
học ngu vậy giốt ơi là giốt
\(https://olm.vn/hoi-dap/detail/569016799282.html \)bạn tham khảo ^_^
Đặt \(x+1;2021x+2020=d\left(d\inℕ^∗\right)\)
Ta có : \(x+1⋮d\Rightarrow2021x+2021⋮d\)(1)
\(2021x+2020⋮d\)(2)
Lấy (1) - (2) ta được :
\(2021x+2021-2021x-2020⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ta có đpcm