choΔABC vuông tại A có góc B =60 độ đường cao AH .trên tia đối của tia HB lấy điểm M sao cho HM=HB. chứng minh rằng:
a)HB bé hơn HC
b)ΔAHB=ΔAHMtừ đó suy ra ΔABM đều
Cho tam giác ABC vuông tại A có , đường cao AH. Trên tia đối của tia HB lấy điểm M sao cho HM = HB.
a) Chứng minh rằng HB < HC.
b) Chứng minh rằng AHB = AHM. Từ đó suy ra ABM là tam giác đều.
c) Gọi N là trung điểm của AC và O là giao điểm của AM và BN. Biết AB = 4 cm, tính độ dài đoạn thẳng AO.
Cho tam giác ABC vuông tại A có góc B=60 độ đường cao AH trên tia đối của HB lấy điểm M sao cho HM=HB CMR HB<HC tam giác AHB=AHM từ đó suy ra tam giác ABM đều gọi N là trung điểm của AC và O là giao điểm của AM và BN giả sử AB=4 tính độ dài AO
a: góc C=90-60=30 độ<góc B
=>AB<AC
=>HB<HC
b: Xet ΔAHB vuông tại H và ΔAHM vuông tại H có
AH chung
HB=HM
=>ΔAHB=ΔAHM
=>AB=AM
mà góc B=60 độ
nên ΔAMB đều
Cho tam giác ABC vuông tại A có AB= 16cm ;AC =12cm, đường cao AH. Trên tia đối của tia CB lấy điểm E. Vẽ HN vuông góc với AE tại N. a) Tính BC; AH;HB và số đo góc B b) Chứng minh AN.AE = HB .HC c) Vẽ HM vuông góc với AB tại M. Chứng minh :AE = 3 AM biết rằng BE =3 MN
a) Ta có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{16^2+12^2}=20\left(cm\right)\)
Ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.16}{20}=\dfrac{48}{5}\left(cm\right)\)
Ta có: \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{16^2}{20}=\dfrac{64}{5}\left(cm\right)\)
Ta có: \(sinB=\dfrac{AC}{BC}=\dfrac{12}{20}=\dfrac{3}{5}\Rightarrow\angle B\approx37\)
b) tam giác AHE vuông tại H có HN là đường cao \(\Rightarrow AN.AE=AH^2\)
tam giác ABC vuông tại A có AH là đường cao \(\Rightarrow AH^2=HB.HC\)
\(\Rightarrow AN.AE=HB.HC\)
c) tam giác AHB vuông tại H có HM là đường cao \(\Rightarrow AH^2=AM.AB\)
\(\Rightarrow AN.AE=AM.AB\Rightarrow\dfrac{AM}{AE}=\dfrac{AN}{AB}\)
Xét \(\Delta AMN\) và \(\Delta AEB:\) Ta có: \(\left\{{}\begin{matrix}\angle EABchung\\\dfrac{AM}{AE}=\dfrac{AN}{AB}\end{matrix}\right.\)
\(\Rightarrow\Delta AMN\sim\Delta AEB\left(c-g-c\right)\Rightarrow\dfrac{AE}{AM}=\dfrac{BE}{MN}\)
mà \(BE=3MN\Rightarrow\dfrac{BE}{MN}=3\Rightarrow\dfrac{AE}{AM}=3\Rightarrow AE=3AM\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=12^2+16^2=400\)
hay BC=20(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot20=16\cdot12=192\)
hay AH=9,6(cm)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow HB^2=16^2-9.6^2=163.84\)
hay HB=12,8(cm)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{20}=\dfrac{3}{5}\)
hay \(\widehat{B}\simeq37^0\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(HB\cdot HC=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHE vuông tại H có HN là đường cao ứng với cạnh huyền AE, ta được:
\(AN\cdot AE=AH^2\)(2)
Từ (1) và (2) suy ra \(HB\cdot HC=AN\cdot AE\)
Bài 4. (2,5 điểm) Cho tam giác ABC vuông tại A có , đường cao AH. Trên tia đối của tia HB lấy điểm M sao cho HM = HB.
a) Chứng minh rằng HB < HC.
b) Chứng minh rằng AHB = AHM. Từ đó suy ra ABM là tam giác đều.
c) Gọi N là trung điểm của AC và O là giao điểm của AM và BN. Biết AB = 4 cm, tính độ dài đoạn thẳng AO.
a: Xét ΔABC có AB<AC
mà HB,HC lần lượt là hình chiếu của AB,AC trên BC
nên HB<HC
b: Xét ΔAHB vuông tại H và ΔAHM vuông tạiH có
AH chung
HB=HM
=>ΔAHB=ΔAHM
=>AB=AM
mà góc ABM=60 độ
nên ΔABM đều
Cho tam giác AHC vuông tại H.Vẽ đường cao HN.a)Cho biết AH=15cm,HN=12cm.Tính độ dài đoạn AN và AC.
b)Trên tia đối của tia HC lấy điểm B sao cho HB<HC.Từ H kẻ HM vuông góc AB tại M.Chứng minh AM.AB=AN.AC.
c)Chứng minh: Cot A+Cot B+Cot C=(HA^2+HC^2+HB^2+HB.HC)/HA.BC
b: Xét ΔHAC vuông tại H có HN là đường cao
nên \(HA^2=AN\cdot AC\left(1\right)\)
Xét ΔHAB vuông tại H có HM là đường cao
nên \(HA^2=AM\cdot AB\left(2\right)\)
Từ (1) và (2) suy ra; \(AN\cdot AC=AM\cdot AB\)
Cho tam giác ABC vuông tại A. Có AB<AC. Từ A kẻ AH vuông góc với BC tại H
a). So sánh độ dài HB và HC
b) Trên tia HC lấy điểm I sao cho HB = HI. Chứng minh: Tam giác ABI là tam giác cân
c) Biết B =60° và điểm M thuộc tỉa đối của tia BA sao cho BM-BI Chứng minh:AC-MI
a: Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔABI có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABI cân tại A
Bài 5. (3đ) Cho tam giác ABC vuông tại A. Có AB<AC. Từ A kẻ AH vuông góc với BC tại H
a) So sánh độ dài HB và HC
b) Trên tia HC lấy điểm I sao cho HB = HI. Chứng minh: Tam giác ABI là tam giác cân
c) Biết B = 60° và điểm M thuộc tia đối của tia BA sao cho BM=BỊ Chứng minh:
AC=MI
a: Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔABI có
AH là đường cao
AH là đường trung tuyến
Do đó:ΔABI cân tại A
Cho tam giác ABC vuông tại A có AB<AC, đường cao AH. Trên tia HA lấy điểm P sao cho HP=HB và trên tia HC lấy điểm M sao cho HM=HA.
Chứng minh rằng
a)HB<HA<HC
b)P là trực tâm của tam giác ABM
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là trung điểm của HB, E là
trung điểm của HC, F là trung điểm của AH. Trên tia đối của tia DF lấy điểm K sao cho D là
trung điểm của KF
a) Chứng minh ΔDBK = ΔDHF, từ đó suy ra AH // BK
b) Chứng minh AB // FK
c) Chứng minh CF vuông góc với AD
d) Chứng minh BF vuông góc với AE
a: Xét ΔDBK và ΔDHF có
DB=DH
\(\widehat{BDK}=\widehat{HDF}\)
DK=DF
Do đó: ΔDBK=ΔDHF
Suy ra: \(\widehat{DBK}=\widehat{DHF}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AH//BK
b: Xét ΔHAB có
F là trung điểm của HA
D là trung điểm của HB
Do đó: FD là đường trung bình của ΔHAB
Suy ra: FD//AB
hay FK//AB