Cho m và n là số nguyên khác 0 thỏa mãn 4/m - 1/n = 1. Tìm m; n
cho m,n là hai số nguyên khác 0 thỏa mãn : 4/m-1/n=1.chứng minh m chia hết cho n .
Lời giải:
\(\frac{4}{m}-\frac{1}{n}=1\)
\(\frac{4\times n-m}{m\times n}=1\)
\(4\times n-m=m\times n\)
Vì $m\times n$ chia hết cho $n$ nên $4\times n-m$ chia hết cho $n$
Mà $4\times n$ chia hết cho $n$ nên $m$ chia hết cho $n$
Ta có điều phải chứng minh.
cho m,n là hai số nguyên khác 0 thỏa mãn: 4/m-1/m=1.chứng minh m chia hết cho n
\(Tham\) \(khảo\) \(nha!!!\)
\(\Rightarrow\)\(\dfrac{4}{m}-\dfrac{1}{n}=1\)
\(\Rightarrow\)\(\dfrac{4}{m}=1+\dfrac{1}{n}\)
\(\Rightarrow\)\(\dfrac{4}{m}=\dfrac{n+1}{n}\)
\(\Rightarrow\)\(4n=m\left(n+1\right)\)
\(\Rightarrow\)\(4n=mn+n\)
\(\Rightarrow\)\(4n-mn=m\)
\(\Rightarrow\)\(n\left(4-m\right)=m\)
\(\Rightarrow\)\(n;4-m\inƯ_{\left(m\right)}\)
\(xét\) \(riêng\) \(n_{\in}Ư_{\left(m\right)}\)
\(\Rightarrow m:n\)
cho m,n là 2 số nguyên khác 0 thỏa mãn 4/m-1/n=1.Chứng minh m chia hết cho n toan lop 6
Do n=1 nên Z sẽ chia hết cho 1
Nên 4/m-1/ chia hết cho n
nên m chia hết cho n
Cho m và n là các số nguyên dương thỏa mãn 10(m2+1)=n2+1 tại m2+1 là số nguyên tố. Tìm số cặp (m;n)
1) Tìm các số tự nhiên n để số 3^n+19 là số chính phương
2) Cho m,n là 2 số nguyên dương thỏa mãn m+n-1 là 1 số nguyên tố và m+n-1 là 1 ước của 2(m^2+n^2)-1 CMR m=n
cho 2 số tự nhiên m và n khác 0 thỏa mãn (m+1/n) + (n+1/m) là số tự nhiên. chứng minh ƯCLN(m;n)<= căn bậc 2 (m+n)
giúp mk vs
Cho m và n là các số nguyên dương thỏa mãn (m,n)=1. Tìm ước chung lớn nhất của 4m+3n và 5m+2n
Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :
Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)
Từ (*) => ab = mnd2 ; [a, b] = mnd
=> (a, b).[a, b] = d.(mnd) = mnd2 = ab
=> ab = (a, b).[a, b] . (**)
Cho m,n thuộc N và p là số nguyên tố thỏa mãn: p/( m-1)=(m+n)/p
m và n là số tự nhiên => m , n ≥ 0
p là số nguyên tố
. . . . . . . . . . . p. . . . . . .m + n
Thỏa mãn ————– = ———– <=> p² = ( m – 1 )( m + n )
. . . . . . . . . .m – 1. . . . . . .p
Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p²
Chú ý : m – 1< m + n ( * )
Do p là số nguyên tố nên p² chỉ có các ước nguyên dương là 1, p và p² ( ** )
Từ ( * ) và ( ** ) ta có m – 1 = 1 và m + n = p². Khi đó m = 2 và tất nhiên 2 + n = p² .
Chúc bạn thành công trong học tập :
1 nếu m, n là các số tự nhiên thỏa mãn 2m^2+m=3n^2+n thì m- n là số nguyên tố
2 chứng minh với n thuộc Z chẵn và n >4 thì n^4-4n^3-16n^2+16 chia hết cho 383
3 cho a, b là số chính phương lẻ. chứng minh (a-1((b-1) chia hết cho 192
4 tìm nghiệm nguyên tố của phương trình x^2- 2y= 1