Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 4 2018 lúc 11:37

Ta có:

 

Dấu “=” xảy ra khi và chỉ khi

Vậy số bộ a,b,c thỏa mãn điều kiện đã cho là 1.

Chọn B.

khoimzx
Xem chi tiết
Tú Triệu Anh
Xem chi tiết
Nguyễn Hưng Phát
8 tháng 2 2019 lúc 8:30

\(\frac{a}{2b+a}+\frac{b}{2c+b}+\frac{c}{2a+c}=\frac{a^2}{2ab+a^2}+\frac{b^2}{2bc+b^2}+\frac{c^2}{2ca+c^2}\)

\(\ge\frac{\left(a+b+c\right)^2}{2ab+a^2+2bc+b^2+2ca+c^2}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Tú Triệu Anh
8 tháng 2 2019 lúc 20:25

bạn giải thích rõ hơn cho mình về xét dấu = xảy ra đc k?

Arima Kousei
9 tháng 2 2019 lúc 15:04

a/2b+a = b/2c+b = c/2a+c

kèm thêm đk : abc = 1

VUX NA
Xem chi tiết
Nguyễn Hoài Đức CTVVIP
21 tháng 8 2021 lúc 19:56

(a2+b2+c2)3(a2+b2+c2)3 ≥ 9(a + b + c)

VyLinhLuân
21 tháng 8 2021 lúc 19:58

(a2+b2+c2)3(a2+b2+c2)3 ≥ 9(a + b + c)

VyLinhLuân
21 tháng 8 2021 lúc 19:58

chúc bn hok tốt

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 9 2017 lúc 16:34

ko ko ko
Xem chi tiết
Trần Đức Thắng
11 tháng 2 2016 lúc 21:21

Áp dụng BĐT Bun nhia cốp xki :

\(\left(9a^3+3b^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2=1\)

<=>\(\frac{1}{9a^3+3b^2+c}\le\frac{1}{9a}+\frac{1}{3}+c\Leftrightarrow\frac{a}{9a^3+3b^2+c}\le a\left(\frac{1}{9a}+\frac{1}{3}+c\right)\) 

<=> \(\frac{a}{9a^3+3b^2+c}\le\frac{1}{9}+\frac{1}{3}a+ac\)

Làm tương tự với 2 cái còn lại 

CỘng vế với vế ba BĐT => GTLN

 

ko ko ko
12 tháng 2 2016 lúc 12:18

tại sao

 $\left(9a^3+3b^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge \left(a+b+c\right)^2=1$

 

nguyen hong quan
2 tháng 5 2021 lúc 16:55
Thì bđt bunhia ấy
Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 11 2019 lúc 17:36

Đáp án là B

Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
16 tháng 1 2021 lúc 20:25

Áp dụng BĐT BSC:

\(P=\dfrac{1}{a}+\dfrac{4}{b}+\dfrac{9}{c}\ge\dfrac{\left(1+2+3\right)^2}{a+b+c}=\dfrac{36}{1}=36\)

\(minP=36\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{6}\\b=\dfrac{1}{3}\\c=\dfrac{1}{2}\end{matrix}\right.\)

Hoài Thu Vũ
Xem chi tiết
Akai Haruma
31 tháng 7 2023 lúc 21:03

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$

$\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}$

$\Rightarrow (a^2+b^2+c^2)^3\geq \frac{(a+b+c)^6}{27}$

Áp dụng BĐT Cô-si: $a+b+c\geq 3\sqrt[3]{abc}=3$

$\Rightarrow (a^2+b^2+c^2)^3\geq \frac{(a+b+c)^6}{27}\geq \frac{(a+b+c).3^5}{27}=9(a+b+c)$
Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$