Cho A = \(^{\dfrac{n+3}{n-2}}\) (n ϵ Z;n≠2). Tìm n để A ϵ Z.
Cho A= \(\dfrac{19n+1}{2n+3}\) . Tìm n để
a) A là phân số
b) Tìm n ϵ Z để A ϵ z
Cho A=\(\dfrac{n+2}{n-5}\left(n\in z;n\ne5\right)\) Tìm n để A ϵ Z
Ta có : \(A=\dfrac{n+2}{n-5}\)
\(\Rightarrow A=\dfrac{n-5+7}{n-5}=\dfrac{n-5}{n-5}+\dfrac{7}{n-5}\)
\(\Rightarrow A=1+\dfrac{7}{n-5}\)
Để \(A\in Z\Leftrightarrow\dfrac{7}{n-5}\in Z\)
\(\Leftrightarrow\left(n-5\right)\inƯ\left(7\right)\)
mà \(Ư\left(7\right)=\left(\pm1;\pm7\right)\)
\(\Rightarrow n\in\left(6;4;12;-2\right)\)
\(Vậy...\)
Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)
Cho p/số: A=\(\dfrac{n+1}{n-2}\)
Tìm n ϵ Z để A là p/số tối giãn.
Cho a ϵ Z. Chứng tỏ \(A=\dfrac{a}{3}+\dfrac{a^2}{2}+\dfrac{a^3}{6}\) là số nguyên
Lời giải:
Ta có: \(A=\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\)
\(\Leftrightarrow A=\frac{2a+3a^2+a^3}{6}\)
Xét tử số:
\(a^3+3a^2+2a=a(a^2+3a+2)\)
\(=a[a(a+2)+(a+2)]\)
\(=a(a+1)(a+2)\)
Vì $a,a+1$ là hai số nguyên liên tiếp nên
\(a(a+1)\vdots 2\Rightarrow a(a+1)(a+2)\vdots 2\)
\(\Leftrightarrow a^3+3a^2+2a\vdots 2\) (1)
Mặt khác \(a,a+1,a+2\) là ba số nguyên liên tiếp nên tích của chúng chia hết cho $3$
\(\Leftrightarrow a(a+1)(a+2)\vdots 3\)
\(\Leftrightarrow a^3+3a^2+2a\vdots 3\) (2)
Từ (1)(2) kết hợp với $(2,3)$ nguyên tố cùng nhau suy ra \(a^3+3a^2+2a\vdots 6\)
\(\Rightarrow A=\frac{a^3+3a^2+2a}{6}\in\mathbb{Z}\). Ta có đpcm.
Tìm n ϵ Z, để các phân số sau có giá trị là số tự nhiên
a) \(\dfrac{n+2}{3}\) b) \(\dfrac{7}{n-1}\) c) \(\dfrac{n+1}{n-1}\)
a) \(\dfrac{n+2}{3}\) là số tự nhiên khi
\(n+2⋮3\)
\(\Rightarrow n+2\in\left\{1;3\right\}\)
\(\Rightarrow n\in\left\{-1;1\right\}\left(n\in Z\right)\)
b) \(\dfrac{7}{n-1}\) là số tự nhiên khi
\(7⋮n-1\)
\(\Rightarrow7n-7\left(n-1\right)⋮n-1\)
\(\Rightarrow7n-7n+7⋮n-1\)
\(\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\in\left\{1;7\right\}\Rightarrow\Rightarrow n\in\left\{2;8\right\}\left(n\in Z\right)\)
c) \(\dfrac{n+1}{n-1}\) là sô tự nhiên khi
\(n+1⋮n-1\)
\(\Rightarrow n+1-\left(n-1\right)⋮n-1\)
\(\Rightarrow n+1-n+1⋮n-1\)
\(\Rightarrow2⋮n-1\)
\(\Rightarrow n-1\in\left\{1;2\right\}\Rightarrow n\in\left\{2;3\right\}\left(n\in Z\right)\)
Bài 1: CMR với n ϵ Z các phân số sau tối giản
a) \(\dfrac{n}{2n+1}\)
b) \(\dfrac{n+5}{n+6}\)
c) \(\dfrac{n+1}{2n+3}\)
d) \(\dfrac{3n+2}{5n+3}\)
e)\(\dfrac{1}{7n+1}\)
Các bạn giải chi tiết cho mình nhé. Thanks all !
a)Cho biểu thức A=\(\dfrac{-5}{n-2}\)
Tìm các số tự nhiên n để biểu thức A là số nguyên
b)Tìm n ϵ z để (4n-3) ⋮ (3n-2)
Các bạn giúp mình nha :))
CMR \(A=\dfrac{n^3}{3}+\dfrac{n^5}{5}+\dfrac{7n}{15}\)ϵ Z với nϵZ