(x1 - x2)2
giải tieps dùng e với ạ
lập phương trình có hai nghiệm x1,x2 được cho trong mỗi trường hợp sau:
a) x1 = -4, x2 = 7
b) x1 = \(\sqrt{5}\)
c)x2 = 3+\(\sqrt{5}\)
d) x1-x2=4
e) x12 + x22=17
làm giúp e với ạ e đang gấp
e. Cho phương trình x² −2x+m=0 (x là ẩn số, m là tham số). Với giá trị nào của m thì phương trình có hai nghiệm x1, x2 thỏa mãn: 2(x1.x2) ²−x1=6+x2 Giải chi tiết giúo e ạ
\(x^2-2x+m=0\)
\(\Delta=b^2-4ac=\left(-2\right)^2-4m=4-4m\)
Để pt có 2 nghiệm \(x_1,x_2\) thì \(\Delta>0\Leftrightarrow4-4m>0\Leftrightarrow-4m>-4\Leftrightarrow m< 1\)
Theo Vi-ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)
Ta có : \(2\left(x_1x_2\right)^2-x_1=6+x_2\)
\(\Leftrightarrow2\left(x_1x_2\right)^2-x_1-x_2-6=0\)
\(\Leftrightarrow2\left(x_1x_2\right)^2-\left(x_1+x_2\right)-6=0\)
\(\Leftrightarrow2m^2-2-6=0\)
\(\Leftrightarrow2m^2=8\)
\(\Leftrightarrow m^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}m=2\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)
Vậy \(m=-2\) thì thỏa mãn đê bài.
Tìm m để phương trình x2 -mx+m-1=0 có hai nghiệm phân biệt x1 ,x2 thỏa mãn x12 +3x2=19 . Giup e với ạ e đang cần gấp ạ !
Cho phương trình : x² - 2(m-3) x + m² +3 = 0.Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thoã mãn x1² + x2² = 86
Làm ơn giải chi tiết giúp từng bước giúp e với, e thật sự kh hiểu bài này, đây là bài thi ạ 🥺
Δ=(2m-6)^2-4(m^2+3)
=4m^2-24m+36-4m^2-12=-24m+24
Để phương trình có hai nghiệm phân biệt thì -24m+24>0
=>m<1
x1^2+x2^2=36
=>(x1+x2)^2-2x1x2=36
=>(2m-6)^2-2(m^2+3)=36
=>4m^2-24m+36-2m^2-6-36=0
=>2m^2-24m-6=0
=>m^2-12m-3=0
=>\(m=6-\sqrt{39}\)
Giúp e giải bài này với ạ! Cảm ơn m.ng!!!
cho PT: x2- (2n -1)x + n.(n-1) = 0 (*) (với n là tham số)
1, giải PT khi n=2 (ko cần làm nhé!)
2, CMR: pt (*) luôn có 2 nghiệm phân biệt với mọi n
3, gọi x1 , x2 là 2 nghiệ của PT (*) với x1 <x2. CMR: x12 -2x2 +3 ≥ 0
b. delta = \(\left(2n-1\right)^2-4.1.n\left(n-1\right)=4n^2-4n+1-4n^2+4n=1>0\)
pt luôn có 2 nghiệm phân biệt
c.\(\left\{{}\begin{matrix}x_1=\dfrac{2n-1-1}{2}=n-1\\x_2=\dfrac{2n-1+1}{2}=n\end{matrix}\right.\)
\(x_1^2-2x_2+3=\left(n-1\right)^2-2n+3=n^2-4n+4=\left(n-2\right)^2\)
(số bình phương luôn lớn hơn bằng 0) với mọi n
2, Ta có : \(\Delta=\left(2n-1\right)^2-4n\left(n-1\right)=4n^2-4n+1-4n^2+4n=1>0\)
Vậy pt luôn có 2 nghiệm pb
3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2n-1\\x_1x_2=n\left(n-1\right)\end{matrix}\right.\)
Vì x1 là nghiệm của pt trên nên ta được
\(x_1^2=\left(2n-1\right)x_1-n\left(n-1\right)\)
Thay vào ta được
\(2nx_1-x_1-n^2+n-2x_2+3\)
bạn kiểm tra lại đề nhé
tìm x biết 2√x - 4 - 3=2
giải giúp mk với ạ
\(\Leftrightarrow x-4=\dfrac{25}{4}\)
hay x=41/4
giả sử x1,x2 là 2 nghiệm của phương trình: x^2 - 8x 6 =0
tính :
a, D= x1^4 - x2^4
b, E= x1^4 x2^4
c, F= 3/x1^2 3/x2^2
d, G= x1.(4- x2^2) x2(4 - x1^2)
e, H= x1^6 x2^6
mn giải giúp e với ạ.cảm ơn
giả sử x1,x2 là 2 nghiệm của phương trình: x^2 - 8x + 6 =0
tính : a, D= x1^4 - x2^4
b, E= x1^4 + x2^4
c, F= 3/x1^2 + 3/x2^2
d, G= x1.(4- x2^2) + x2(4 - x1^2)
e, H= x1^6 + x2^6
mn giải giúp e với ạ.cảm ơn
a: \(\left\{{}\begin{matrix}x_1+x_2=8\\x_1x_2=6\end{matrix}\right.\)
\(D=x_1^4-x_2^4=\left(x_1+x_2\right)\left(x_1-x_2\right)\left(x_1^2+x_2^2\right)\)
\(=8\cdot\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\cdot\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=8\cdot\left[8^2-2\cdot6\right]\cdot\sqrt{8^2-4\cdot6}\)
\(=8\cdot52\cdot2\sqrt{10}=832\sqrt{10}\)
b: \(E=\left(x_1^2+x_2^2\right)^2-2x_1^2\cdot x_2^2\)
\(=52^2-2\cdot\left(x_1\cdot x_2\right)^2=52^2-2\cdot6^2=2632\)
c: \(F=\dfrac{3x_2^2+3x_1^2}{\left(x_1\cdot x_2\right)^2}=\dfrac{3\cdot52}{6^2}=\dfrac{13}{3}\)
Cho phương trình x² - 6x + m = 0. Tìm m để phương trình có 2 nghiệm x1, x2 thoã mãn x1² + x2² = 12. Giải gấp chi tiết từng bước giúp e ạ