Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Trần Minh Hoàng
26 tháng 1 2021 lúc 18:18

Từ gt suy ra a < b + c nên 2a < a + b + c = 2

\(\Rightarrow a< 1\).

Chứng minh tương tự: \(b< 1;c< 1\).

Do đó \(\left(a-1\right)\left(b-1\right)\left(c-1\right)< 0\Leftrightarrow abc< ab+bc+ca-1\) (Do a + b + c = 2)

\(\Rightarrow a^2+b^2+c^2+2abc< a^2+b^2+c^2+2\left(ab+bc+ca-1\right)=\left(a+b+c\right)^2-2=2\) (đpcm).

masterpro
Xem chi tiết
Lê Minh Đức
Xem chi tiết
Thùy Lê
Xem chi tiết
Nguyễn Tuấn
14 tháng 2 2016 lúc 21:18

a^2+b^2+c^2+2ab+2cb+2ac-a^2-b^2-c^2-2abc>2

2ab+2ca+bc-2abc>2

 

Thùy Lê
15 tháng 2 2016 lúc 19:53

sao lại từ phần cần chứng minh nhân ra vậy.

Mà bạn làm mình ko hiểu

Ngan Vo
Xem chi tiết
giang ho dai ca
27 tháng 5 2015 lúc 15:55

a, b, c là độ dài 3 cạnh của tgiác nên ta có: b+c > a => ab+ac > a² 
tương tự: bc+ab > b²; ca+bc > c² 
cộng lại: 2ab+2bc+2ca > a²+b²+c² (*) 

gthiết: 4 = (a+b+c)² = a²+b²+c² + 2ab+2bc+2ca > a²+b²+c² + a²+b²+c² {ad (*)} 
=> 2 > a²+b²+c² (đpcm) 

đúng nha

Thùy Lê
Xem chi tiết
Nguyễn Đặng Bảo Trâm
Xem chi tiết
Hoàng Minh Hoàng
1 tháng 8 2017 lúc 10:16

a^2+b^2+c^2=(a+b+c)^2-2ab-2bc-2ca=1-2ab-2bc-2ca

((a^2+b^2+c^2)-1)/2abc=(1-2ab-2bc-2ca-1)/abc=-(1/a+1/b+1/c)

T=4/a+b +4/b+c +4/c+a<=1/a+1/b+1/b+1/c+1/c+1/a-1/a-1/b-1/c=1/a+1/b+1/c<=9

Dấu = khi a=b=c=1/3

Nguyễn Đặng Bảo Trâm
2 tháng 8 2017 lúc 22:36

e cảm ơn anh nhìu nke hihi .Anh giỏi wa

Thiên An
3 tháng 8 2017 lúc 20:04

cái khúc cuối  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le9\)  có phải bị ngược dấu rồi không?

Đàm Thảo Anh
Xem chi tiết
dương minh tuấn
2 tháng 11 2016 lúc 17:15

Do a,b,c là 3 cạnh của 1 tam giác nên dễ dàng suy ra được a,b,c < 1
Từ đó ta có (1-a)(1-b)(1-c)>0
Suy ra:


Suy ra ĐCCM?

pham trung thanh
Xem chi tiết
DanAlex
2 tháng 11 2017 lúc 16:04

Do a;b;c là 3 cạnh của tam giác nên: a + b + c = 2

Áp dụng bất đẳng thức của tam giác:

\(\Rightarrow\)a < b + c

\(\Rightarrow\)a + a < a + b + c

\(\Rightarrow\)2a < 2 \(\Rightarrow\)a < 1

Làm tương tự; ta chứng minh được b < 1; c < 1

\(\Rightarrow\)(1 - a)(1 - b)(1 - c) > 0

\(\Rightarrow\)(1 - a - b + ab)(1 - c) > 0

\(\Rightarrow\)1 - a - b + ab - c + ac + bc - abc > 0

\(\Rightarrow\)1 - (a + b + c) + (ab + ac + bc) > abc

\(\Rightarrow\)2[1 - (a + b + c) + (ab + ac + bc)] > 2abc

\(\Rightarrow\)2 - 2(a + b + c) + 2(ab + ac + bc) - 2abc > 0

\(\Rightarrow\)2abc + (a + b + c)^2 - 2ab - 2ac - 2bc < 2 (vì a + b + c = 2)

\(\Rightarrow\)\(a^2+b^2+c^2+2abc< 2\)(ĐPCM)

Bảo Anh Nguyễn
4 tháng 11 2017 lúc 21:23

CMR là chuẩn mẹ rồi!

khà khà.........................