Tìm số tự nhiên n và số aaa biết rằng :
1 + 2 + 3 + 4 + 5 + ... + n = aaa
Tìm số tự nhiên n và chữ số a biết rằng 1+2+3+...+n= aaa( aaa có gạch đầu)
ta có:
1+2+3+...+n=aaa
=> n.(n-1)/2=aaa.111
=>n.(n-1)=aaa.222=a.3.2.37
=>n.(n+1)=aaa.6.37
vì n(n+1) là số tự nhiên liên tiếp =>a.6 và 37 là hai số tự nhiên liên tiếp ; a.6 chia hết cho 6
=>a.6=36<=>a=6=>n=36
vậy...(tự kl nhé)
mình đang rất cần bài nay mọi người giải giúp mình với
bạn lên google gõ câu đề này nó sẽ có đáp án đấy
Tìm số tự nhiên n và chữ số s biết rằng : 1+2+3+4+....+n = aaa :aaa có gách ở trên đầu nhá!~~~~~~~~~~~~~~`
1+2+3+....+n=aaa
n.(n+1):2=111a
n(n+1)=222a
n(n+1)=2.3.37.a
nếu n=37 thì n+1=38 suy ra 2.3.a=38 suy ra a=38/6(loại)
nếu n+1 =37 thì n=36 suy ra 2.3.a=36 suy ra a=6
vậy a =6 ,n=36
Tìm số tự nhiên n và aaa
Biết 1+2+3+4+5+......+n = aaa
tìm số tự nhiên n và aaa
1+2+3+....+n=aaa
=>[n(n+1)]:2=aaa=a.111=a.3.27
=>n(n+1)=a.3.37.2=(3.a.2).27=6a.37
vì n(n+1) là tích 2 STN liên tiếp nên 6a.37 cũng là tích 2 STN liên tiếp
=>6a=36=>a=36
6a=38=>a=19/3(loại)
do đó a=36=>n=36
Vây n=36 và aaa=666
Tìm số tự nhiên n và chữ số a biết rằng:
1+ 2+ 3+ …….+ n = aaa
1+2+3+...+n=aaa
=>\(\dfrac{\text{n(n+1)}}{2}\)=aaa
=>n(n+1)=aaa.2=a.111.2=a.3.37.2=6a.37
Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên 6a.37 cũng là tích 2 số tự nhiên liên tiếp
+)6a=36=>a=6 (TM)
+)6a=38=>a=19/3 (không TM)
do đó a=6 thỏa mãn
Khi đó n(n+1)=1332=36.37=36.(36+1)
=>n=36
Vậy n=36;a=6
1+2+3+...+n=aaa
=>n(n+1)=aaa.2=a.111.2=a.3.37.2=6a.37
Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên 6a.37 cũng là tích 2 số tự nhiên liên tiếp
+)6a=36=>a=6 (TM)
+)6a=38=>a=19/3 (không TM)
do đó a=6 thỏa mãn
Khi đó n(n+1)=1332=36.37=36.(36+1)
=>n=36
Vậy n=36;a=6
Tìm số tự nhiên n và chữ số a biết rằng : 1+2+3+....+n=aaa
Ta có: \(1+2+3+\cdots+n=\overline{aaa}\)
=>\(\frac{n\left(n+1\right)}{2}=100a+10a+a=111a\)
=>\(n\left(n+1\right)=222a=37\cdot6a\)
=>6a=36 và n=36
=>n=36 và a=6
Tìm số tự nhiên n và chữ số a biết rằng:
1+2+3+4+...+n=aaa
1+2+3+...+n=aaa
\(=>\frac{n\left(n+1\right)}{2}=aaa\)
=>n(n+1)=aaa.2=a.111.2=a.3.37.2=6a.37
Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên 6a.37 cũng là tích 2 số tự nhiên liên tiếp
+)6a=36=>a=6 (TM)
+)6a=38=>a=19/3 (không TM)
do đó a=6 thỏa mãn
Khi đó n(n+1)=1332=36.37=36.(36+1)
=>n=36
Vậy n=36;a=6
Tìm số tự nhiên n và chữ số a biết rằng: 1+ 2 + 3 + 4 + ........+ n = aaa
Tìm số tự nhiên n và chữ số a biết rằng: 1+2+3+...+n=aaa
1+3+3+...+n=aaa.
=> n(n-1):2=a.111.
=>n(n-1)=a.222=a.3.2.37.
Ta có 2 TH: n chia hết cho 37 và n+1 chia hết cho 37.
Th1 n chia hết cho 37.
=>n=37k=>n(n+1)=37k(37k+1)=37.2.3.a
=>k(37k+1)=6a. CÓ a là chữ số=>a\(\leq\) 9=>6a\(\leq\) 54.
=>k(37k+1) \(\leq\) 54=> k=1=> 38=6a=> a\(\notin\) N.
Th2 n+1 chia hết cho 37=> n+1=37k.
=>n(n+1)=(37k-1)37k=2.3.37k.
=>k(37k-1)=6a.
Nếu k\(\geq\) 2=> k(37k-1)\(\geq\) 2(37.2-1)=146>54=> Vô lí.
=>k=1=>6a=36=>a=6=>n=36.
Vậy n=36, và a=6.
tìm số tự nhiên n và chữ số a biết rằng 1+2+3+...+n=aaa
1+3+3+...+n=aaa.
=> n(n-1):2=a.111.
=>n(n-1)=a.222=a.3.2.37.
Ta có 2 TH: n chia hết cho 37 và n+1 chia hết cho 37.
Th1 n chia hết cho 37.
=>n=37k=>n(n+1)=37k(37k+1)=37.2.3.a
=>k(37k+1)=6a. CÓ a là chữ số=>a\(\leq\) 9=>6a\(\leq\) 54.
=>k(37k+1) \(\leq\) 54=> k=1=> 38=6a=> a\(\notin\) N.
Th2 n+1 chia hết cho 37=> n+1=37k.
=>n(n+1)=(37k-1)37k=2.3.37k.
=>k(37k-1)=6a.
Nếu k\(\geq\) 2=> k(37k-1)\(\geq\) 2(37.2-1)=146>54=> Vô lí.
=>k=1=>6a=36=>a=6=>n=36.
Vậy n=36, và a=6.