cho tam giác DEF vuông tại D.Tia phân giác của góc DEF cắt DF tại A từ A kẻ AH vuông góc với EF tại H và AH cắt ED tại K chứng minh AD bằng AH
Cho tam giác DEF vuông tại D, EK là tia phân giác của góc DEF ( K thuộc DF ). Trên tia EF lấy điểm H sao cho EH=ED.
a) Chứng minh tam giác EDK=tam giác EHK, từ đó chứng minh HK vuông góc với EF
b) Từ H kẻ đường thẳng vuông góc với DF, nó cắt DF tại I. Chứng minh HI // ED
Cho tam giác DEF vuông tại D, có DEF=60 độ ,EC là tia phân giác của góc E (C thuộc DF). Từ C, vẽ CH vuông góc EF (H thuộc EF)
a) Chứng minh: tam giác DCE= tam giác HCE
b) Cạnh CH kéo dài cắt tia ED tại K. Chứng minh: tam giác CKF cân tại C
c) chứng minh: DH<CF
a: Xét ΔEDC vuông tại D và ΔEHC vuông tại H có
EC chung
\(\widehat{DEC}=\widehat{HEC}\)
Do đó; ΔEDC=ΔEHC
b: Xét ΔDCK vuông tại D vàΔHCF vuông tại H có
CD=CH
\(\widehat{DCK}=\widehat{HCF}\)
Do đó; ΔDCK=ΔHCF
Suy ra: CK=CF
a, Xét Δ DCE và Δ HCE, có :
EC là cạnh chung
\(\widehat{CDE}=\widehat{CHE}=90^o\)
\(\widehat{DEC}=\widehat{HEC}\) (EC là tia phân giác \(\widehat{DEH}\))
=> Δ DCE = Δ HCE (g.c.g)
=> DC = HC
b, Xét Δ DCK và Δ HCF, có :
DC = HC (cmt)
\(\widehat{DCK}=\widehat{HCF}\) (đối đỉnh)
=> Δ DCK = Δ HCF ( ch - cgn)
=> CK = CF
=> Δ CKF cân tại C
Cho tam giác DEF vuông tại D . Tia phân giác của góc DEF cắt DF tại I. TừI kẻ IH vuông góc với EF tại H. Chứng minh DI=IH
Xét ΔEDI vuông tại D và ΔEHI vuông tại H có
EI chung
\(\widehat{DEI}=\widehat{HEI}\)
Do đó ΔEDI=ΔEHI
Suy ra: ID=IH
???????????????????????????????????????????????????
Cho tam giác DEF vuông tại E (ED < EF), tia phân giác của góc D cắt EF tại M. Trên tia đối của tia MD lấy điểm N sao cho DM = MN, từ điểm N vẽ đường thẳng vuông góc với EF tại I và cắt DF tại điểm P.
a) Chứng minh tam giác EDM = TAM GIÁC INM.
b) Chứng minh DP = NP.
a: Xét ΔMED vuông tại E và ΔMIN vuôngtại I có
MD=MN
góc EMD=góc IMN
=>ΔMED=ΔMIN
b: ΔMED=ΔMIN
=>góc MDE=góc MNI=góc MDP
=>DP=NP
Cho tam giác DEF vuông tại D (DE< DF), tia phân giác của góc E cắt DF tại M. Trên tia đối của tia ME lấy điểm H sao cho ME = MH, từ điểm H vẽ đường thẳng vuông góc với DF tại N và cắt EF tại điểm K.
a) Chứng minh .
b) Chứng minh EK = HK.
c) Chứng minh rằng MN < MF.
cho tam giác nhọn DEF có DE=DF tia phân giác của góc D cắt EF tại K. Chứng minh:
a/ Tam giác EID bằng tam giác FIK
b/ ED song song với FK
c/Kẻ KX vuông góc với EF tại H trên tia Kx lấy điểm A sao cho HA=HK chứng minh IA=ID
Cho tam giác DEF vuông tại D ,có góc DEF = 60độ ,EC là tia phân giác của góc E (C thuộc DF).Từ C ,vẽ CH vuông góc với EF (h thuộc EF).
a/ c/m tam giác DCE =tam giác HCE.
b/ Cạnh CH kéo dài cắt tia ED tại K . c/m △CKF cân tại C
a: Xét ΔEDC vuông tại D và ΔEHC vuông tại H có
EC chung
góc DEC=góc HEC
=>ΔEDC=ΔEHC
b: Xét ΔCDK vuông tại D và ΔCHF vuông tại H có
CD=CH
góc DCK=góc HCF
=>ΔCDK=ΔCHF
=>CK=CF
=>ΔCKF cân tại C
cho tam giác abc vuông tại a kẻ phân giác bd cảu góc b ( d thuộc ac) kẻ ah vuông góc với bd ( h thuộc Bd) ah cắt bc tại e a, chứng minh tam giác bha =tam giác bhe b, chứng minh ed vuông góc với bc c, chứng minh ad nhỏ hơn dc d, kẻ k vuông góc với bc ( k thuộc bc) chứng minh ae là phân giác của góc bak