Tìm x,y sao cho gt cua bieu thuc:
M= (3x -2y -1)2 + (1- 0,25y )2 -3 là nho nhat
cho x+y=3. tim gt nho nhat cua bieu thuc |x+1|+|y-2|
Áp dụng bất đẳng thức:
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\Rightarrow\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|\)
\(\Rightarrow\left|x+1\right|+\left|y-2\right|\ge\left|3-1\right|\)
\(\Rightarrow\left|x+1\right|+\left|y-2\right|\ge2\)
Dấu "=" xảy ra khi:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\ge0\Rightarrow x\ge-1\\y-2\ge0\Rightarrow y\ge2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\y-2< 0\Rightarrow y< 2\end{matrix}\right.\end{matrix}\right.\)
Vậy các cặp \(x;y\) thỏa mãn là:
\(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
cho x+y=3. tim gt nho nhat cua bieu thuc |x+1|+|y-2|
Cho x>0,y>0 , x+y\(\ge\)6 .tim gia tri nho nhat cua bieu thuc p=3x+2y+6/x+8/y
\(P=3x+2y+\dfrac{6}{x}+\dfrac{8}{y}=\dfrac{3x}{2}+\dfrac{6}{x}+\dfrac{y}{2}+\dfrac{8}{y}+\dfrac{3}{2}\left(x+y\right)\)
\(\Rightarrow P\ge2\sqrt{\dfrac{3x}{2}.\dfrac{6}{x}}+2\sqrt{\dfrac{y}{2}.\dfrac{8}{y}}+\dfrac{3}{2}.6=19\)
\(\Rightarrow P_{min}=19\) khi \(\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
Cho x+2y=1. Tim gia tri nho nhat cua bieu thuc A = x2+2y2.
Ta có: x+2y=1
=> x=1-2y
Thay x=1-2y vào biểu thức A
Ta có: A=(1-2y)2+2y2
A=(2x-1)2 >= 0, dấu = xảy ra <=> x=1/2
Vậy min A = 0 <=> x=1/2 và y=1/4
\(5A=\left(1^2+2^2\right)\left(x^2+2y^2\right)\ge\left(x+2y\right)^2=1\Rightarrow A\ge\frac{1}{5}\)
cho bieu thuc M=(x-1)^2+(y+3)^2+2002. tim gia tri nho nhat cua bieu thuc m
Tim gia tri lon nhat hoac nho nhat cua cac bieu thuc sau:
1,x(x+1)+5
2, -x2-4x+9
3, x2-4x+7+y2+2y
4,\(\dfrac{x^{^2}+3}{x^2-1}\)
5, \(\dfrac{x^2+8}{x-1}\) voi x>1
1: \(=x^2+x+5=x^2+x+\dfrac{1}{4}+\dfrac{19}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>=\dfrac{19}{4}\)
Dấu '=' xảy ra khi x=-1/2
2: \(=-\left(x^2+4x-9\right)\)
\(=-\left(x^2+4x+4-13\right)\)
\(=-\left(x+2\right)^2+13\le13\)
Dấu '=' xảy ra khi x=-2
3: \(=x^2-4x+4+y^2+2y+1+2\)
\(=\left(x-2\right)^2+\left(y+1\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=2 và y=-1
Tim gia tri nho nhat cua bieu thuc :
f(x,y)=\(\dfrac{3x^2+2y^2}{2005xy}\) voi xy \(\ne\) 0
Tim gia tri lon nhat hoac nho nhat cua cac bieu thuc sau
a, C=(x-1)2+\(|2y+2|\)-3
\(\left(x-1\right)^2\ge0;\left|2y+2\right|\ge0\Rightarrow\left(x-1\right)^2+\left|2y+2\right|-3\ge-3\)
dấu = xảy ra khi \(\hept{\begin{cases}x-1=0\\2y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)
vậy GTNN của C là -3 khi x=1, y=-1
Tim gia tri nho nhat hoac gia tri lon nhat cua bieu thuc D = (x + 5)^2 + (2y - 6)^2 + 1
Nhỏ nhất:
D có giá trị nhỏ nhất khi: (x + 5)2 = 0 và (2y - 6)2 = 0
(x + 5)2 = 0
(x + 5)2 = 02
=> x + 5 = 0
x = 0 - 5
x = -5
(2y - 6)2 = 0
(2y - 6)2 = 02
=> 2y - 6 = 0
2y = 0 + 6
2y = 6
y = 6 : 2
y = 3
Ta có: D = 0 + 0 + 1 = 1
Lớn nhất:(không có giá trị lớn nhất)