a: Xét ΔAMB và ΔAMC co
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc MAB=góc MAC
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF và ME=MF
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
c: IN//EM
=>NI/ME=BN/BM
=>NI/MF=BN/CM
=>NI/BN=MF/CM
FM//NK
=>MF/NK=CM/CN
=>MF/CM=NK/CN
=>NK/CN=NI/BN=(NI+NK)/BC ko đổi
a: Xét ΔAMB và ΔAMC co
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc MAB=góc MAC
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF và ME=MF
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
a: Xét ΔAMB và ΔAMC co
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc MAB=góc MAC
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF và ME=MF
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
c: IN//EM
=>NI/ME=BN/BM
=>NI/MF=BN/CM
=>NI/BN=MF/CM
FM//NK
=>MF/NK=CM/CN
=>MF/CM=NK/CN
=>NK/CN=NI/BN=(NI+NK)/BC ko đổi
a: Xét ΔAMB và ΔAMC co
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc MAB=góc MAC
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF và ME=MF
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
c: IN//EM
=>NI/ME=BN/BM
=>NI/MF=BN/CM
=>NI/BN=MF/CM
FM//NK
=>MF/NK=CM/CN
=>MF/CM=NK/CN
=>NK/CN=NI/BN=(NI+NK)/BC ko đổi
Cho tam giác ABC cân tại A, M là trung điểm của BC,a)chứng minh tam giác amb=tam giác amc b)Từ M kẻ các đường ME vuông góc với Ab(E ∈ AB); MF vuông góc với Ac (F ∈ AC). Chứng minh ea=fa c)chứng minh ef song song bc
a, Vì Tam giác `ABC` cân tại A `=> AB = AC ;`\(\widehat{B}=\widehat{C}\)
Xét Tam giác `AMB` và Tam giác `AMC` có:
`AM chung`
\(\widehat{B}=\widehat{C}\) `(CMT)`
`MB = MC (g``t)`
`=>` Tam giác `AMB =` Tam giác `AMC (c-g-c)`
b, Vì Tam giác `AMB =` Tam giác `AMC (a)`
`=>` \(\widehat{EAM}=\widehat{FAM}\) (2 góc tương ứng).
Xét Tam giác `EAM` và Tam giác `FAM` có:
AM chung
\(\widehat{EAM}=\widehat{FAM}\) `(CMT)`
\(\widehat{AEM}=\widehat{AFM}=90^0\)
`=>` Tam giác `EAM =` Tam giác `FAM (ch-gn)`
`=> EA = FA` (2 cạnh tương ứng).
c, *câu này mình hơi bí bn ạ:')
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
Do đó: ΔAEM=ΔAFM
=>AE=AF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
a: Xét ΔEBM vuông tại E và ΔFCM vuông tại F có
MB=MC
góc B=góc C
=>ΔEBM=ΔFCM
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
ME=MF
=>ΔAEM=ΔAFM
=>AE=AF
mà ME=MF
nên AM là trung trực của EF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
d: Xet ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
=>ΔABD=ΔACD
=>BD=CD
=>D nằm trên trung trực của BC
=>A,M,D thẳng hàng
Cho tam giác ABC có AB = AC. M là trung điểm của BC. a) chứng minh tam giác AMB bằng tam giác AMC. b) từ M kẻ ME vuông góc với AB và MF vuông góc với AC. Chứng minh rằng AE = EF c) chứng minh EF song song với BC b) từ B kẻ đường thẳng vuông góc với AB. Từ C kẻ đường thẳng vuông góc với AC. Hai đường thẳng này cắt nhau tại N. Chứng minh rằng A,M,N thẳng hàng.
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b:Sửa đề: Chứng minh AE=AF
Ta có: ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
Ta có: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM}\)
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
=>AE=AF
c: Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
nên EF//BC
d: Xét ΔABN vuông tại B và ΔACN vuông tại C có
AN chung
AB=AC
Do đó: ΔABN=ΔACN
=>BN=CN
=>N nằm trên đường trung trực của BC(1)
Ta có; ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC(2)
Từ (1) và (2) suy ra A,M,N thẳng hàng
Câu 10: Cho tam giác ABC cân tại A, vẽ trung tuyến AM. Từ M kẻ ME vuông góc với AB tại E, kẻ MF vuông góc Với AC tại F.
a) Chứng minh
b) Chứng minh AM là trung trực của EF.
b) ta có tam giác ABC cân
=> \(\widehat{B}=\widehat{C}=180-\widehat{A}\) (1)
mà AM là trung tuyến => AM cx là phân giác và AM cx là đường cao (t/c tam giác cân)
=>\(\widehat{A1}=\widehat{A2}\)
xét tam giác AEM và tam giác AfM
có AM chung
\(\widehat{E}=\widehat{F}\)=90o
\(\widehat{A1}=\widehat{A2}\)
=> tam giác AEM =tam giác AFM (CH-GN)
=> AE =AC (2 cạnh tương ứng)
=> tam giác AEF cân ở \(\widehat{A}\)
=> \(\widehat{E}=\widehat{F}=180-\widehat{A}\) (2)
từ 1 và 2 =>\(\widehat{E}=\widehat{B}\) mà 2 góc ở vt đồng vị
=> EF // BC
mà AM ⊥ BC
=> EF ⊥ AM
=> AM là trung trực của EF (t/c tam giác cân)
b) Xét ΔEMB vuông tại E và ΔFMC vuông tại F có
MB=MC(M là trung điểm của BC)
\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
Do đó: ΔEMB=ΔFMC(cạnh huyền-góc nhọn)
Suy ra: ME=MF(hai cạnh tương ứng) và EB=FC(Hai cạnh tương ứng)
Ta có: AE+EB=AB(E nằm giữa A và B)
AF+FC=AC(F nằm giữa A và C)
mà EB=FC(cmt)
và AB=AC(ΔBAC cân tại A)
nên AE=AF
Ta có: AE=AF(cmt)
nên A nằm trên đường trung trực của EF(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: ME=MF(cmt)
nên M nằm trên đường trung trực của EF(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của EF(Đpcm)
Cho tam giác cân ABC (AB = AC). Trung tuyến AM. Từ M kẻ ME vuông góc với AB tại E, MF vuông góc với AC tại F
a, Chứng minh ME = MF
b, Chứng minh AM là trung trực của EF
c, Từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C. 2 đường thẳng này cắt nhau tại D. Chứng minh 3 điểm A,M,D thẳng hàng
Xét tam giác ABM và tam giác ACM
có : + AB = AC (gt)
+ BM = CM (gt)
+) AM chung
=> tam giác ABM = tam giác ACM (c.c.c)
=> góc A1 = góc A2
Xét tam giác AEM và tam giác AFM có :
+) góc AME = góc AMF (Vì góc MEA = MFA (= 90o) ; góc A1 = góc A2 => góc MEA - góc A1 = góc MFA - góc A2 => <AME = <AMF)
+ góc A1 = góc A2
+) AM chung
=> Tam giác AEM = Tam giác AFM (g.c.g)
=> ME = MF (cạnh tương ứng)
=> AE = AF
b) Gọi K là giao điểm của AM và EF
Xét tam giác AEK và tam giác AFK có
+) góc A1 = góc A2
+) AF = AE (cmt)
+) AK chung
=> tam giác AEK = tam giác AFK (c.g.c)
=> EK = FK (cạnh tương ứng)
=> góc AKE = góc AKF (góc tương ứng)
Lại có góc AKE + góc AKF = 180 o
=> góc AKE = góc AKF = 90o
mà EK = FK
=> AK là trung trực của EF
mà K \(\in\)AM
=> AM là trung trực của EF
c) Vì tam giác ABM = tam giác ACM (cmt)
=> góc AMB = góc AMC
Mà góc AMB + góc AMC = 180 o
=> góc AMB = góc AMC = 90o
lạ có MC = MB = 1/2BC
=> AM là trung trực của BC (1)
Vì góc AMB = góc AMC = 90o
mà góc AMB + góc BMD = góc AMC + góc CMD (=180o)
=> góc BMD = góc CMD = 90o
lại có BM = CM = 1/2BC
=> MD là trung trực của BC (2)
Từ (1) (2) => A;M;D thẳng hàng