Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Huyền Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 4 2023 lúc 14:40

a: Xét ΔAMB và ΔAMC co

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

=>góc MAB=góc MAC

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF và ME=MF

b: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

c: IN//EM

=>NI/ME=BN/BM

=>NI/MF=BN/CM

=>NI/BN=MF/CM

FM//NK

=>MF/NK=CM/CN

=>MF/CM=NK/CN

=>NK/CN=NI/BN=(NI+NK)/BC ko đổi

Nguyễn Huyền Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 4 2023 lúc 14:26

a: Xét ΔAMB và ΔAMC co

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

=>góc MAB=góc MAC

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF và ME=MF

b: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

Nguyễn Huyền Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 4 2023 lúc 16:15

a: Xét ΔAMB và ΔAMC co

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

=>góc MAB=góc MAC

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF và ME=MF

b: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

c: IN//EM

=>NI/ME=BN/BM

=>NI/MF=BN/CM

=>NI/BN=MF/CM

FM//NK

=>MF/NK=CM/CN

=>MF/CM=NK/CN

=>NK/CN=NI/BN=(NI+NK)/BC ko đổi

Nguyễn Huyền Trang
Xem chi tiết
Nguyễn Minh Khôi
12 tháng 6 lúc 20:30

a: Xét ΔAMB và ΔAMC co

AM chung

MB=MC

AB=AC

=>ΔAMB=ΔAMC

=>góc MAB=góc MAC

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF và ME=MF

b: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

c: IN//EM

=>NI/ME=BN/BM

=>NI/MF=BN/CM

=>NI/BN=MF/CM

FM//NK

=>MF/NK=CM/CN

=>MF/CM=NK/CN

=>NK/CN=NI/BN=(NI+NK)/BC ko đổi

Nguyễn Hương
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
9 tháng 1 2023 lúc 16:54

a, Vì Tam giác `ABC` cân tại A `=> AB = AC ;`\(\widehat{B}=\widehat{C}\)

Xét Tam giác `AMB` và Tam giác `AMC` có:

`AM chung`

\(\widehat{B}=\widehat{C}\) `(CMT)`

`MB = MC (g``t)`

`=>` Tam giác `AMB =` Tam giác `AMC (c-g-c)`

b, Vì Tam giác `AMB =` Tam giác `AMC (a)`

`=>` \(\widehat{EAM}=\widehat{FAM}\) (2 góc tương ứng).

Xét Tam giác `EAM` và Tam giác `FAM` có:

AM chung

\(\widehat{EAM}=\widehat{FAM}\) `(CMT)`

\(\widehat{AEM}=\widehat{AFM}=90^0\)

`=>` Tam giác `EAM =` Tam giác `FAM (ch-gn)`

`=> EA = FA` (2 cạnh tương ứng).

c, *câu này mình hơi bí bn ạ:')

loading...

 

Nguyễn Lê Phước Thịnh
9 tháng 1 2023 lúc 22:19

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

Do đó: ΔAEM=ΔAFM

=>AE=AF

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

NGUYỄN ERYK
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 4 2023 lúc 21:52

a: Xét ΔEBM vuông tại E và ΔFCM vuông tại F có

MB=MC

góc B=góc C

=>ΔEBM=ΔFCM

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

ME=MF

=>ΔAEM=ΔAFM

=>AE=AF

mà ME=MF

nên AM là trung trực của EF
c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

d: Xet ΔABD vuông tại B và ΔACD vuông tại C có

AD chung

AB=AC

=>ΔABD=ΔACD
=>BD=CD
=>D nằm trên trung trực của BC

=>A,M,D thẳng hàng

Duong
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 12 2023 lúc 19:38

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b:Sửa đề: Chứng minh AE=AF

Ta có: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

Ta có: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó: ΔAEM=ΔAFM

=>AE=AF

c: Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

nên EF//BC

d: Xét ΔABN vuông tại B và ΔACN vuông tại C có

AN chung

AB=AC

Do đó: ΔABN=ΔACN

=>BN=CN

=>N nằm trên đường trung trực của BC(1)

Ta có; ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường trung trực của BC(2)

Từ (1) và (2) suy ra A,M,N thẳng hàng

Đỗ Trọng Hoang Anh
Xem chi tiết
Hành Tây
30 tháng 4 2021 lúc 21:00

a là j ạ

 

😈tử thần😈
30 tháng 4 2021 lúc 21:44

b) ta có tam giác ABC cân

=> \(\widehat{B}=\widehat{C}=180-\widehat{A}\)  (1)

mà AM là trung tuyến => AM cx là phân giác và AM cx là đường cao (t/c tam giác cân)

=>\(\widehat{A1}=\widehat{A2}\)

xét tam giác AEM và tam giác AfM

có AM chung

\(\widehat{E}=\widehat{F}\)=90o

\(\widehat{A1}=\widehat{A2}\)

=> tam giác AEM =tam giác AFM (CH-GN)

=> AE =AC (2 cạnh tương ứng)

=> tam giác AEF cân ở \(​​\widehat{A}\)

=> \(\widehat{E}=\widehat{F}=180-\widehat{A}\) (2)

từ 1 và 2 =>\(\widehat{E}=\widehat{B}\) mà 2 góc ở vt đồng vị 

=> EF // BC 

mà AM ⊥ BC 

=> EF ⊥ AM

=> AM là trung trực của EF (t/c tam giác cân)

 

Nguyễn Lê Phước Thịnh
30 tháng 4 2021 lúc 22:58

b) Xét ΔEMB vuông tại E và ΔFMC vuông tại F có 

MB=MC(M là trung điểm của BC)

\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

Do đó: ΔEMB=ΔFMC(cạnh huyền-góc nhọn)

Suy ra: ME=MF(hai cạnh tương ứng) và EB=FC(Hai cạnh tương ứng)

Ta có: AE+EB=AB(E nằm giữa A và B)

AF+FC=AC(F nằm giữa A và C)

mà EB=FC(cmt)

và AB=AC(ΔBAC cân tại A)

nên AE=AF

Ta có: AE=AF(cmt)

nên A nằm trên đường trung trực của EF(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: ME=MF(cmt)

nên M nằm trên đường trung trực của EF(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của EF(Đpcm)

Từ Khánh Hưng
Xem chi tiết
Xyz OLM
14 tháng 8 2020 lúc 11:03

A B C M E F D 1 2 K

Xét tam giác ABM và tam giác ACM 

có : + AB = AC (gt)

+ BM = CM (gt)

+) AM chung

=> tam giác ABM = tam giác ACM (c.c.c)

=> góc A1 = góc A2

Xét tam giác AEM và tam giác AFM có : 

+) góc AME = góc AMF (Vì góc MEA = MFA (= 90o) ; góc A1 = góc A2 => góc MEA - góc A1 = góc MFA - góc A2 => <AME = <AMF)

+ góc A1 = góc A2 

+) AM chung

=> Tam giác AEM = Tam giác AFM (g.c.g)

=> ME = MF (cạnh tương ứng)

=> AE = AF 

b) Gọi K là giao điểm của AM và EF

Xét tam giác AEK và tam giác AFK có

+) góc A1 = góc A2

+) AF = AE (cmt)

+) AK chung

=> tam giác AEK = tam giác AFK (c.g.c)

=> EK = FK (cạnh tương ứng)

=> góc AKE = góc AKF (góc tương ứng)

Lại có góc AKE + góc AKF = 180 o

=> góc AKE = góc AKF = 90o

mà EK = FK 

=> AK là trung trực của EF 

mà K \(\in\)AM

=> AM là trung trực của EF 

c) Vì  tam giác ABM = tam giác ACM (cmt)

=> góc AMB = góc AMC

Mà góc AMB + góc AMC = 180 o

=> góc AMB = góc AMC = 90o

lạ có MC = MB = 1/2BC

=> AM là trung trực của BC (1)

Vì góc AMB = góc AMC = 90o

mà góc AMB + góc BMD = góc AMC + góc CMD (=180o)

=> góc BMD = góc CMD = 90o 

lại có BM = CM = 1/2BC

=> MD là trung trực của BC (2)

Từ (1) (2) => A;M;D thẳng hàng

Khách vãng lai đã xóa