a: Xét ΔAMB và ΔAMC co
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc MAB=góc MAC
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF và ME=MF
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
a: Xét ΔAMB và ΔAMC co
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc MAB=góc MAC
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF và ME=MF
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
Cho tam giác ABC có AB = AC. M là trung điểm của BC. a) chứng minh tam giác AMB bằng tam giác AMC. b) từ M kẻ ME vuông góc với AB và MF vuông góc với AC. Chứng minh rằng AE = EF c) chứng minh EF song song với BC b) từ B kẻ đường thẳng vuông góc với AB. Từ C kẻ đường thẳng vuông góc với AC. Hai đường thẳng này cắt nhau tại N. Chứng minh rằng A,M,N thẳng hàng.
Cho tam giác ABC cân tại A, M là trung điểm của BC,a)chứng minh tam giác amb=tam giác amc b)Từ M kẻ các đường ME vuông góc với Ab(E ∈ AB); MF vuông góc với Ac (F ∈ AC). Chứng minh ea=fa c)chứng minh ef song song bc
cho tam giác ABC vuông tại A. M là trung điểm của BC. trên tia đối của MA lấy D sao cho M là trung điểm của AD.
Từ M kẻ MK vuông góc với AC tại K, kẻ MN vuông góc với Ab tại N, điểm E là gạo điểm của AM và NK. chứng minh ME =1/2 NK.
Cho ∆ABC cân tại A. Tia phân giác góc BAC cắt cạnh BC tại M.
a)Kẻ ME vuông góc với AB .Kẻ MF vuông góc với AC .Chứng minh ∆AEF cân.
b)Chứng minh AM vuông góc với EF.
c)Qua B kẻ đường thẳng song song với AC cắt đường thẳng FM tại I. Chứng minh BE=BI.
Vẽ hình nha
Cho tam giác ABC cân tại A, lấy M là trung điểm của BC.
a) Chứng minh AM vuông góc với BC.
b) Kẻ ME vuông góc với AB tại E, MF vuông góc với AC tại F. Chứng minh rằng ME = MF
c) Chứng minh EF song song với BC.
d) Tia EM cắt AC tại K, tia FM cắt AB tại H. Tìm điều kiện để tam giác AHK là tam giác đều.