cho x,y,z là 3 cạnh của 1 tam giác , CMR :
2x^2y^2+2^2z^2+2z^2x^2-x^4-y^4-z^4>0
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
mày hỏi vả bài kiểm tra à thằng điên
a) Cho a,b,c độ dài 3 cạnh của một tam giác
C/m a^3+ab^3-abc^2+2a^2b^2 >0
b) cho x+y+z=0.
C/m x^4+y^4+z^4=2(x^2y^2+y^2z^2+z^2x^2)
1,Cho A=x^4+y^4+z^4-2x^2y^2-2x^2z^2-2y^2z^2
a,Phân tích A thành tích
b,Cho x,y,z là đo dài 3 cạnh tam giác.C/m: A<0
Cho 1/x+1/y+1/z=0.CMR:(x^2y^2+y^2z^2+z^2x^2)^2=2(x^4y^4+y^4z^4+z^4x^4)
Cho \(x,y,z\ge0,x+y+z=2\)
CMR: \(x^2y+y^2z+z^2x\le x^3+y^3+z^3\le1+\dfrac{1}{2}\left(x^4+y^4+z^4\right)\)
BĐT bên trái rất đơn giản, chỉ cần áp dụng:
\(x^3+x^3+y^3\ge3x^2y\) ; tương tự và cộng lại và được
Ta chứng minh BĐT bên phải:
\(\Leftrightarrow x^4+y^4+z^4+2\ge2\left(x^3+y^3+z^3\right)=\left(x+y+z\right)\left(x^3+y^3+z^3\right)\)
\(\Leftrightarrow2\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)
\(\Leftrightarrow\dfrac{1}{8}\left(x+y+z\right)^4\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)
Thật vậy, ta có:
\(\dfrac{1}{8}\left(x+y+z\right)^4=\dfrac{1}{8}\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]^2\)
\(\ge\dfrac{1}{8}.4\left(x^2+y^2+z^2\right).2\left(xy+yz+zx\right)=\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)
\(=x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)+xyz\left(x+y+z\right)\)
\(\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\) (đpcm)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;1;1\right)\) và hoán vị
1 a) Cho a,b,c là độ dài 3 cạnh của một tam giác .C/m
a^3b+ab^3-abc^2+2a^2b^2>0(1)
b) cho x+y+z=0.(1).C/m x^4+y^4+z^4= 2(x^2y^2+y^2z^2+z^2x^2)
2 a) cho x+y+z=0.C/tỏ x^3+y^3+z^3=3xyz
b) phân tích đa thức thành nhân tử
(a-b)^3+(b-c)^3+(c-a)^3
2
a
\(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\)
\(\Rightarrow x^3+y^3+3x^2y+3xy^2=-z^3\)
\(\Rightarrow x^3+y^3+z^3=3xy\left(x+y\right)=3xyz\)
b
Đặt \(a-b=x;b-c=y;c-a=z\Rightarrow x+y+z=0\)
Ta có bài toán mới:Cho \(x+y+z=0\).Phân tích đa thức thành nhân tử:\(x^3+y^3+z^3\)
Áp dụng kết quả câu a ta được:
\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
cho x,y,z là số đo ba cạnh của một tam giác chưng minh
\(x^2y+y^2z+z^2x+zx^2+yz^2+xy^2-x^3-y^3-z^3>0\)
Ta có:
x2y + y2z + z2x + zx2 + yz2 + xy2 - x3 - y3 - z3 > 0
\(\Leftrightarrow\)(x2y + zx2 - x3) + (y2z + xy2 - y3) + (z2x + z2y - z3) > 0
\(\Leftrightarrow\)x2(y + z - x) + y2(z + x - y) + z2(x + y - z) > 0 (đúng)
Vì x,y,z là 3 cạnh của tam giác nên tổng 2 cạnh lớn hơn cạnh còng lại.
mk mới học lớp 5 thôi nên ko giúp đc gì, thông cảm nha! chúc cậu học giỏi
ta có :
\(x^2y+y^2z+z^2x+zx^2+yz^2+xy^2-x^3-y^3-z^3>0\)
\(\Leftrightarrow\left(x^2y+zx^2-x^3\right)+\left(y^2z+xy^2-y^3\right)+\left(z^2x+z^2y-z^3>0\right)\)
\(\Leftrightarrow x^2\left(y+z-x\right)+y^2\left(z+x-y\right)+z^2\left(x+y-z\right)>0\left(dung\right)\)
vì x;y;z là 3 cạnh của tam giác nên tổng hai cạnh lớn hơn cạnh còn lại
cho x,y,z>0 thỏa mãn x+y+z=3. Cmr:
\(\frac{2x^2+y^2+z^2}{4-yz}+\frac{2y^2+x^2+z^2}{4-xz}+\frac{2z^2+x^2+y^2}{4-xy}\ge4xyz\)
toán lớp mấy v
1hay 23456789
Cho 3x-2y/4 = 2z-4x/3 = 4y-3z/2. CMR: x/2 = y/3 = z/4
Cho x+16/9 = y-25/16 = z+9/25 và 2x^3-1 = 15. Tìm x, y, z