Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
laughtpee
Xem chi tiết
ILoveMath
Xem chi tiết
Nguyễn Thị Bích Thảo
Xem chi tiết
Minh Thư
5 tháng 10 2019 lúc 20:59

a) \(2x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow x^2+x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+10x+25\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+5\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x\\\left(x+5\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow\left(x+y\right)^2+\left(x+5\right)^2\ge0\forall x\)

Vậy đẳng thức xảy ra\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)

Minh Thư
5 tháng 10 2019 lúc 21:02

b)\(x^2+3y^2+2xy-2y+1=0\)

\(\Leftrightarrow x^2+y^2+2y^2+2xy-2y+\frac{1}{2}+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

Vì \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2\ge0\)

nên \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)

\(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

nên pt vô nghiệm

Edogawa Conan
5 tháng 10 2019 lúc 21:02

a) 2x2 + y2 + 2xy + 10x + 25 = 0

=> (x2 + 2xy + y2) + (x2 + 10x + 25) = 0

=> (x + y)2 + (x + 5)2 = 0 

    <=> \(\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\) <=> \(\hept{\begin{cases}y=-x\\x=-5\end{cases}}\) <=> \(\hept{\begin{cases}y=5\\x=-5\end{cases}}\)

b)c) xem lại đề

Miner Đức
Xem chi tiết
Linh
Xem chi tiết
Lương Thị Ngân Hà
Xem chi tiết
o0o I am a studious pers...
24 tháng 7 2018 lúc 18:53

mik ko bít

I don't now

................................

.............

sofia đệ nhất
Xem chi tiết
Nguyễn Thùy Linh
Xem chi tiết
Hồ Quốc Đạt
6 tháng 4 2017 lúc 11:47

Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 \(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)

\(M=x^3+x^2y-2x^2-xy-y^2+\left(2y+y\right)+x-\left(-2+1\right)\)

\(M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)+1\)

\(M=\left(x^2.x+x^2.y-2x^2\right)-\left(x.y+y.y-2y\right)+\left(x+y-2\right)+1\)

\(M=x^2.\left(x+y-2\right)-y.\left(x+y-2\right)+\left(x+y-2\right)+1\)

\(M=x^2.0+y.0+0+1\)

\(M=1\)

\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-2\)

\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-\left(-4+2\right)\)

\(N=\left(x^3+x^2y-2x^2\right)-\left(x^2y+xy^2-2xy\right)+\left(2x+2y-4\right)+2\)

\(N=\left(x^2x+x^2y-2x^2\right)-\left(xyx+xyy-2xy\right)+\left(2x+2y-4\right)+2\)

\(N=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)

\(N=x^2.0-xy.0+2.0+2\)

\(N=2\)

\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(P=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left(x^2+xy-2x\right)+3\)\(P=\left(x^3x+x^3y-2x^3\right)+\left(x^2y.x+x^2yy-2x^2y\right)-\left(xx+xy-2x\right)+3\)

\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3\)

\(P=x^3.0+x^2y.0-x.0+3\)

\(P=3\)

Tích mình nha!hahahihi

Hồ Quốc Đạt
6 tháng 4 2017 lúc 11:49

Mà bài này hình như học ở lớp 7 rồi!lolang

Marry Lili Potter
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 0:52

Ta có: \(\left(ax+by\right)^2=\left(a^2+b^2\right)\left(x^2+y^2\right)\)

\(\Leftrightarrow a^2x^2+2abxy+b^2y^2=a^2x^2+a^2y^2+x^2b^2+b^2y^2\)

\(\Leftrightarrow2abxy=a^2y^2+x^2b^2\)

\(\Leftrightarrow\left(ay-xb\right)^2=0\)

\(\Leftrightarrow ay=xb\)

hay \(\dfrac{a}{x}=\dfrac{b}{y}\)