Tìm x, y biết:
I y + 2011 I + 30 =\(\frac{2010}{\left(2x-6\right)^{2^{ }}+67}\)
giúp mk nhha
tìm cặp số nguyên (x;y)biết:
\(|y+2011|+30=\frac{2010}{\left(2x-6\right)^2+67}\)
Tìm cặp số nguyên ( x ; y ) thỏa mãn:
\(\left|y+2011\right|+30=\frac{2010}{\left(2x+6\right)^2+67}\)
\(\hept{\begin{cases}\left|y+2011\right|+30\ge30\\\frac{2010}{\left(2x+6\right)^2+67}\le30\end{cases}\text{dấu = xảy ra khi }}\hept{\begin{cases}\left|y+2011\right|=0\\\left(2x+6\right)=0\end{cases}\Rightarrow\hept{\begin{cases}y=-2011\\x=-3\end{cases}}}\)
làm tắt, cố hiểu nhoa :D!!
Tìm cặp số nguyên (x,y) biết \(\left|y+2011\right|+30=\dfrac{2010}{\left(2x-6\right)^2+67}\)
Ta thấy: \(\left|y+2011\right|\ge0\forall y\)
\(\Rightarrow VT=\left|y+2011\right|+30\ge30\forall y\left(1\right)\)
Lại có: \(\left(2x-6\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x-6\right)^2+67\ge67\forall x\)
\(\Rightarrow\dfrac{1}{\left(2x-6\right)^2+67}\le\dfrac{1}{67}\forall x\)
\(\Rightarrow VP=\dfrac{2012}{\left(2x-6\right)^2+67}\le\dfrac{2012}{67}=30\forall x\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) suy ra \(VT\ge30\ge VP\)
Nên xảy ra khi và chỉ khi \(VT=VP=30\)
\(\Rightarrow\left\{{}\begin{matrix}\left|y+2011\right|+30=30\\\dfrac{2010}{\left(2x-6\right)^2+67}=30\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}y=-2011\\x=3\end{matrix}\right.\)
Vậy cặp số nguyên \(\left(x;y\right)=\left(3;-2011\right)\)
Làm được bài nào thì làm hộ mình vớii
Bài 1
a. Tính: \(A=\frac{3,375-3,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5\cdot\frac{5}{11}-\frac{5}{12}}:\frac{5\left(3\cdot7^{15}-19\cdot7^{14}\right)}{49^8+3\cdot7^{15}}+1,2\left(1\right)\)
b. Tìm các số x, y biết: \(\left|y+2020\right|+30=\frac{2010}{\left(2x-6\right)^2+67}\)
c. Chứng minh rằng: \(\frac{1}{5^3}+\frac{1}{6^3}+\frac{1}{7^3}+...+\frac{1}{2020^3}< \frac{1}{40}\)
Bài 2
a. Tìm x, y, z biết: \(\left(3x-2y\right)^4+\left(3x-4z\right)^2+\left|xy+xz-zy-240\right|=0\)
b. Tìm x, y, z biết: \(\frac{x^3}{125}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2-2z^2=-124\)
a/ Cho x,y,z khác 0 thỏa mãn \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
tính B=\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
b/ Cho a,b,c,d khác 0. Tính
\(T=x^{2011}+y^{2011}+z^{2011}+t^{2011}\) biết x,y,z,t thỏa mãn :
\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+=d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
Từ \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\left(1\right)\)
*)Xét \(x+y+z\ne0\left(2\right)\). Từ (1) và (2)
\(\Rightarrow x=y=z\). Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=2\cdot2\cdot2=8\)
*)Xét \(x+y+z=0\)\(\Rightarrow\left\{\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)
Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=\frac{-z}{y}\cdot\frac{-x}{z}\cdot\frac{-y}{x}=-1\)
a)
Ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\left\{\begin{matrix}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}y+z-x=x\\z+x-y=y\\x+y-z=z\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}y+z=2x\\z+x=2y\\x+y=2z\end{matrix}\right.\) (1)
Ta có \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
\(\Rightarrow B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)
Thế (1) vào biểu thức B
\(\Rightarrow B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}\)
\(\Rightarrow B=2.2.2=8\)
Vậy biểu thức \(B=8\)
Bài 1 : Tìm x biết :
\(\left|\left|3x-3\right|+2x+\left(-1\right)^{2016}\right|=3x+2017^0\)
Bài 2 . Tìm Gía trị nhỏ nhất của biểu thức :
\(A=\left|x-2008\right|+\left|x-2009\right|+\left|y-2010\right|+\left|x-2011\right|+2011\)
Các bạn học giỏi vào giúp ạ !!!
Giúp mình với ạ
Giải hệ phương trình\(\left\{{}\begin{matrix}\left|x-1\right|^{2010}+\left|x-2\right|^{2011}=1\\x^2+y^2-2x=11\end{matrix}\right.\)
Xét pt \(\left|x-1\right|^{2010}+\left|x-2\right|^{2011}=1\) (1)
Nhận thấy \(x=1\) và \(x=2\) là 2 nghiệm của pt
- Với \(x>2\Rightarrow\left\{{}\begin{matrix}\left|x-2\right|>0\\\left|x-1\right|>1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|^{2010}>1\\\left|x-2\right|^{2011}>0\end{matrix}\right.\)
\(\Rightarrow\left|x-1\right|^{2010}+\left|x-2\right|^{2011}>1\) nên pt vô nghiệm
- Với \(x< 1\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|=\left|1-x\right|>0\\\left|x-2\right|=\left|2-x\right|>1\end{matrix}\right.\)
Tương tự như trên ta có \(\left|x-1\right|^{2010}+\left|x-2\right|^{2011}>1\) \(\Rightarrow\) pt vô nghiệm
- Với \(1< x< 2\Rightarrow\left\{{}\begin{matrix}0< \left|x-1\right|< 1\\0< \left|2-x\right|< 1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|^{2010}< \left|x-1\right|\\\left|2-x\right|^{2011}< \left|2-x\right|\end{matrix}\right.\)
\(\Rightarrow\left|x-1\right|^{2010}+\left|x-2\right|^{2011}< \left|x-1\right|+\left|2-x\right|=x-1+2-x=1\)
\(\Rightarrow\) Pt vô nghiệm
Vậy pt có đúng 2 nghiệm \(x=1\); \(x=2\)
Lần lượt thế vào \(x^2+y^2-2x=11\) để tìm y
tìm x,y thỏa mãn
a.\(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right).\left(5x+6\right)}=\frac{2010}{2011}\)
\(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right).\left(5x+6\right)}=\frac{2010}{2011}\)
\(\Rightarrow1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(\Rightarrow1-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(\Rightarrow\frac{1}{5x+6}=1-\frac{2010}{2011}\)
\(\Rightarrow\frac{1}{5x+6}=\frac{1}{2011}\)
\(\Rightarrow5x+6=2011\)
\(\Rightarrow5x=2011-6\)
\(\Rightarrow5x=2005\)
\(\Rightarrow x=401\)
Giải phương trình
\(\frac{1}{2}\left(\frac{2x-2}{2009}+\frac{2x}{2010}+\frac{2x+2}{2011}\right)=\frac{33}{10}-\left(\frac{x+1}{2011}+\frac{x-1}{2009}+\frac{x}{2010}\right)\)