Chứng minh rằng với n thộc N, ta có: 1/1.6 + 1/6.11 + 1/11.16 + ... + 1/(Sn+1).(Sn+6) = n+1/Sn+6
chứng minh rằng với mọi n thuộc N ta luôn có: 1/1.6+1/6.11+1/11.16+...+1/(5.n+1).(5.n+6)=n+1/5.n+6
Chứng minh rằng với mọi n thuộc N ta luôn có:
1/1.6 + 1/6.11 + 1/11.16 + ......+ 1/( 5n + 1) (5n + 6) = n+1/ 5n + 6
chứng tỏ rằng với mọi n thuộc N ta luôn có
\(\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+....+\dfrac{1}{\left(5n+1\right).\left(5n+6\right)}=\dfrac{n+1}{5n+6}\)
\(VT=\dfrac{1}{5}\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{\left(5n+1\right)\left(5n+6\right)}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{5n+6}\right)\)
\(=\dfrac{1}{5}\cdot\dfrac{5n+6-1}{5n+6}\)
\(=\dfrac{n+1}{5n+6}=VP\)
Chứng minh 1/1.6+1/6.11+1/11.16+...+1/(5n+1)(5n+6)=n+1/5n+6
CM: \(\dfrac{1}{1.6}\)+ \(\dfrac{1}{11.16}\)+...+ \(\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}\) = \(\dfrac{n+1}{5n+6}\)
A = \(\dfrac{1}{5}\)(\(\dfrac{5}{1.6}\) + \(\dfrac{5}{6.11}\)+...+ \(\dfrac{5}{\left(5n+1\right).\left(5n+6\right)}\))
A = \(\dfrac{1}{5}\).( \(\dfrac{1}{1}\) - \(\dfrac{1}{6}\)+ \(\dfrac{1}{6}\) - \(\dfrac{1}{11}\)+...+ \(\dfrac{1}{5n+1}\) - \(\dfrac{1}{5n+6}\))
A = \(\dfrac{1}{5}\) .( \(\dfrac{1}{1}\) - \(\dfrac{1}{5n+6}\))
A = \(\dfrac{1}{5}\). \(\dfrac{5n+6-1}{5n+6}\)
A = \(\dfrac{1}{5}\). \(\dfrac{5n+5}{5n+6}\)
A = \(\dfrac{1}{5}\) . \(\dfrac{5.\left(n+1\right)}{5n+6}\)
A = \(\dfrac{n+1}{5n+6}\)
⇒\(\dfrac{1}{1.6}\) + \(\dfrac{1}{6.11}\)+ \(\dfrac{1}{11.16}\)+...+ \(\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}\) = \(\dfrac{n+1}{5n+1}\) (đpcm)
\(A=\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}\)
\(A=\dfrac{1}{5}\left[1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right]\)
\(A=\dfrac{1}{5}\left(1-\dfrac{1}{5n+6}\right)\)
\(A=\dfrac{1}{5}\left(\dfrac{5n+6-1}{5n+6}\right)=\dfrac{1}{5}\left(\dfrac{5n+5}{5n+6}\right)=\dfrac{1}{5}.5\left(\dfrac{n+1}{5n+6}\right)=\dfrac{n+1}{5n+6}\)
\(\Rightarrow dpcm\)
Chứng minh rằng với mọi n \(\in\) N ta luôn có:
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{\left(5n+1\right)\left(5n+6\right)}=\frac{n+1}{5n+6}\)
Heo mi pờ lít
câu hỏi tương tự có đó bạn, bạn vào tham khảo nhe!
BT1:Chứng minh rằng với mọi n thuộc N ta luôn có: 1/1.6 + 1/6.11 + 1/11.16 + ... +1/(5n+1)(5n+6) = n+1/5n+6
BT 2 :Tìm x thuộc N biết: x - 20/11.13 - 20/13.15 - 20/15.17 - .... - 20/53.55 = 3/11
BT 3 : Tìm x thuộc N biết: 1/21 + 1/28 + 1/36 + ... + 2/x(x+1) = 2/9
mình trả lời bài 1 thôi nhé :
Gọi biểu thức trên là A.
Theo bài ra ta có:A=1/1.6+1/6.11+1/11.16+...+1/(5n+1)+1/(5n+6)
=1/5(1-1/6+1/6-1/11+1/11-1/16+...+1/5n+1-1/5n+6)
=1/5(1-1/5n+6)
=1/5( 5n+6/5n+6-1/5n+6)
=1/5(5n+6-1/5n+6)
=1/5.5n+5/5n+6
=n+1/5n+6
=ĐIỀU PHẢI CHỨNG MINH
x- 20/11.13 - 20/13.15 - 20/13.15 - 20/15.17 -...- 20/53.55=3/11
x-10.(2/11.13+2/13.15+2/15.17+...+2/53.55=3/11
x-10.(1/11-1/13+1/13-1/15+1/15-1/17+...+1/53-1/55)=3/11
x-10.(1/11-1/55)=3/11
x-10.4/55=3/11
x-8/11=3/11
x = 3/11+8/11
x=11/11=1
****
chứng minh rằng với mọi n thuộc Z ta luôn \(\frac{1}{1.6}\)+ \(\frac{1}{6.11}\)+\(\frac{1}{11.16}\)+........+\(\frac{1}{\left(5n+1\right).\left(5n+6\right)}\)=\(\frac{n+1}{5n+6}\)
giúp mình đi sớm nhé
Chứng minh rằng với mọi n \(\in\) N ta luôn có:
\(\dfrac{1}{1.6}\)+\(\dfrac{1}{6.11}\)+\(\dfrac{1}{11.16}\)+...+\(\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}\)= \(\dfrac{n+1}{5n+6}\)
\(\dfrac{1}{1\cdot6}+\dfrac{1}{6\cdot11}+\dfrac{1}{11\cdot16}+...+\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}=\dfrac{n+1}{5n+6}\)
\(VT=\dfrac{1}{5}\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{\left(5n+1\right)\left(5n+6\right)}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{5n+6}\right)\)\(=\dfrac{1}{5}\cdot\left(\dfrac{5n+6}{5n+6}-\dfrac{1}{5n+6}\right)\)
\(=\dfrac{1}{5}\cdot\dfrac{5\left(n+1\right)}{5n+6}=\dfrac{n+1}{5n+6}=VP\)
Ta có: \(\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{\left(5n+1\right).\left(5n+6\right)}\)
=\(\dfrac{1}{5}.\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right)\)
=\(\dfrac{1}{5}.\left(1-\dfrac{1}{5n+6}\right)\)
= \(\dfrac{1}{5}.\left(\dfrac{5n+6}{5n+6}-\dfrac{1}{5n+6}\right)\)
=\(\dfrac{1}{5}.\dfrac{5n+5}{5n+6}\)
=\(\dfrac{1}{5}.\dfrac{5.\left(n+1\right)}{5n+6}\)
=\(\dfrac{n+1}{5n+6}\left(ĐPCM\right)\)