1+1/2+1/3+....+1/2100-1
Chứng minh M>100 và M<50
1/tim x biet
1/3+1/6+1/10+...+1/x(x+1)2=2016/2017
2/
cho A= 1/2.3/4.5/6. .... .9999/10000
so sanh A voi 1%
3/tinh M=1+1/2+1/22+...+1/299+1/21001/2100
Ban nao giai giup mimh voi sang mai minh nop roi
1Chứng minh
12(x+y)=3(x+y)(x+1)(y+1)
Cho x,y,z là số thực tùy ý biết x+y+z=0 và -1≤x≤1; -1≤y≤1; -1≤z≤1
Chứng minh x2+y4+z6≤2
Cho a, b, c là các số thực dương và thỏa mãn điều kiện abc = 1
Chứng minh rằng \(\dfrac{1}{2+a}\)+\(\dfrac{1}{2+b}\)+\(\dfrac{1}{2+c}\)≤ 1
\(abc=1\) nên tồn tại các số dương x;y;z sao cho \(\left(a;b;c\right)=\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)
BĐT cần chứng minh tương đương:
\(\dfrac{y}{x+2y}+\dfrac{z}{y+2z}+\dfrac{x}{z+2x}\le1\)
\(\Leftrightarrow\dfrac{2y}{x+2y}-1+\dfrac{2z}{y+2z}-1+\dfrac{2x}{z+2x}-1\le2-3\)
\(\Leftrightarrow\dfrac{x}{x+2y}+\dfrac{y}{y+2z}+\dfrac{z}{z+2x}\ge1\)
Điều này đúng do:
\(VT=\dfrac{x^2}{x^2+2xy}+\dfrac{y^2}{y^2+2yz}+\dfrac{z^2}{z^2+2xz}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\)
1 + 1 + 2 + 2 + 3 + 3 nhân 100 - 2100 = bao nhiêu???
1 + 1 + 2 + 2 + 3 + 3 x 100 - 2100
= (1 x 2) + (2 x 2) + (3 x 2) x 100 - 2100
= 2 + 4 + 6 x 100 - 2100
= 6 + 6 x 100 - 2100
= 12 x 100 - 2100
= 1200 - 2100
= -900
\(M=1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2^{100}-1}\\ Chứng\\ minh:\\ M< 100\\ và\\ M>50\)
dãy số của bạn không có quy luật, nên xem lại câu hỏi
Cho ba số thực dương a,b,c thỏa mãn abc = 1
Chứng minh rằng : \(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\) ≤ \(\dfrac{1}{2}\)
\(Áp\ dụng\ BĐT\ AM - GM,\ ta\ có: \\\sum\dfrac{1}{a^2+2b^2+3}=\sum\dfrac{1}{(a^2+b^2)+(b^2+1)+2}\le\sum\dfrac{1}{2ab+2b+2} \\=\dfrac{1}{2}\sum\dfrac{1}{ab+b+1}=\dfrac{1}{2}.1=\dfrac{1}{2} \\Đẳng\ thức\ xảy\ ra\ khi\ a=b=c=1.\)
A=\(\frac{1}{^22}+\frac{1}{^23}+\frac{1}{^2\text{4}}+......+\frac{1}{^2100}\)
Chứng minh hơn 3/4
B=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{100^2}\)<1
cho a,b,c là ba số dương thõa mãn điều kiện ab+bc+ca=1
Chứng minh rằng a/√1-a2+b/√1-b2+c/√1-c2 ≤ 3/2
Sửa đề: 1+a^2;1+b^2;1+c^2
\(\dfrac{a}{\sqrt{1+a^2}}=\dfrac{a}{\sqrt{a^2+ab+c+ac}}=\sqrt{\dfrac{a}{a+b}\cdot\dfrac{a}{a+c}}< =\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)
\(\dfrac{b}{\sqrt{1+b^2}}< =\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{b}{b+a}\right)\)
\(\dfrac{c}{\sqrt{1+c^2}}< =\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{a+b}\right)\)
=>\(A< =\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{3}{2}\)