Tìm GTLN của:\(P=-x^2-8x+5\)
Tìm GTNN của
A=2.x^2+8x-24
Tìm GTLN của
B=-x^2-8x+5
\(A=2x^2+8x-24\)
\(=2\left(x^2+4x-12\right)\)
\(=2\left[x^2+4x-4-8\right]\)
\(=2\left[\left(x-2\right)^2-8\right]\)
\(\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^2-8\ge-8\)
\(\Rightarrow2\left[\left(x-2\right)^2-8\right]\ge-16\)
Do đó GTNN của A là -16 khi \(x-2=0\Rightarrow x=2\)
\(B=x^2-8x+5=x^2-8x+16-9\)
\(=x^2-2\left(4x\right)+4^2-9\)
\(=\left(x-4\right)^2-9\)
\(\left(x-4\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2-9\ge-9\)
Do đó GTNN của B là -9 khi \(x-4=0\Rightarrow x=4\)
Tìm GTLN của: 5-8x-x2
\(5-8x-x^2\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(\left(x+4\right)^2-21\right)\)
\(=21-\left(x+4\right)^2\le21\)
Min bằng 21 \(\Leftrightarrow x=-4\)
Tìm GTNN của 3x^2-6x+1
Tìm GTLN của 5-8x-x^2
Tìm gtnn, gtln của A= x^2+8x+15 B= 7x-x^2-5
1) \(A=x^2+8x+15=\left(x^2+8x+16\right)-1=\left(x+4\right)^2-1\ge-1\)
\(minA=-1\Leftrightarrow x=-4\)
2) \(B=7x-x^2-5=-\left(x^2-7x+\dfrac{49}{4}\right)+\dfrac{29}{4}=-\left(x-\dfrac{7}{2}\right)^2+\dfrac{29}{4}\le\dfrac{29}{4}\)
\(maxB=\dfrac{29}{4}\Leftrightarrow x=\dfrac{7}{2}\)
Ta có: \(A=x^2+8x+15\)
\(=x^2+8x+16-1\)
\(=\left(x+4\right)^2-1\ge-1\forall x\)
Dấu '=' xảy ra khi x=-4
Tìm GTLN của A=|2-x|-|8x+5|; B = |x/2-2|+|x/4|
Tìm GTLN của đa thức
1) f(x)= -3x^2 -12x +5
2)f(x)= -8x^2 +20x
1) \(f\left(x\right)=-3x^2-12x+5\)
\(\Rightarrow f\left(x\right)=-3\left(x^2+4x\right)+5\)
\(\Rightarrow f\left(x\right)=-3\left(x^2+4x+4\right)+5+12\)
\(\Rightarrow f\left(x\right)=-3\left(x+2\right)^2+17\le17\left(-3\left(x+2\right)^2\le0,\forall x\right)\)
\(\Rightarrow GTLN\left(f\left(x\right)\right)=17\left(tạix=-2\right)\)
2) \(f\left(x\right)=-8x^2+20x\)\
\(\Rightarrow f\left(x\right)=-8\left(x^2+\dfrac{5}{2}x\right)\)
\(\Rightarrow f\left(x\right)=-8\left(x^2+\dfrac{5}{2}x+\dfrac{25}{16}\right)+\dfrac{25}{2}\)
\(\Rightarrow f\left(x\right)=-8\left(x+\dfrac{5}{4}\right)^2+\dfrac{25}{2}\le\dfrac{25}{2}\left(-8\left(x+\dfrac{5}{4}\right)^2\le0,\forall x\right)\)
\(\Rightarrow GTLN\left(f\left(x\right)\right)=\dfrac{25}{2}\left(tạix=-\dfrac{5}{4}\right)\)
Bài 1:
a, Tìm GTNN của A = \(4x^2+4x+11\)
b, Tìm GTLN của B = \(5-8x-x^2\)
I zì:vv
a) Ta có: \(A=4x^2+4x+11=4x^2+4x+1=10=\left(2x+1\right)^2+10\ge10\forall x\)
Vậy MinA=10 khi \(x=-\dfrac{1}{2}\)
b) Ta có: \(B=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21\le21\forall x\)
Vậy MaxB=21 khi x=-4
Tìm GTLN, GTNN của:
A= 5-8x-x2
B= x2+x+1
A= 5-8x-x2
=-x2-8x+21-16
=21-(x2+8x+16)
=21-(x+4)2\(\ge\)21-0=21
Dấu = khi x=-4
Vậy Amax=21 khi x=-4
B= x2+x+1
\(=x^2+\frac{x}{2}+\frac{x}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)\left(x+\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}\)
Dấu = khi x=-1/2
Vậy Bmin=3/4 khi x=-1/2
tìm GTLN : A = 5- 8x -x^2
\(A=5-8x-x^2\)
\(=-\left(x^2+8x+16\right)+21\)
\(=-\left(x+4\right)^2+21\le21\forall x\)
Dấu "=" xảy ra<=> \(-\left(x+4\right)^2=0\Leftrightarrow x=-4\)
Vậy....
Ta có
=-(x2+ 8x +16) +21
= - (x + 4 ) 2 + 21 < 21x
= - ( x+ 4) 2 = 0<=> = -4
~Study well~ :)
\(A=5-8x-x^2\)
\(=-\left(x2+8x+16\right)+21\)
\(=-\left(x+4\right)^2+21< 21x\)
\(=-\left(x+4\right)^2=0\Leftrightarrow-4\)