Tam giác abc đường cao ah biết ab=9 bc=15 tính chu vi và diện tích tam giác abh
Cho tam giác ABC vuông tại A,AB/AC=3/7 đường cao AH=42 cm.Tính chu vi tam giác ABH và diện tích tam giác AHC
Lời giải:
Vì $AB: AC=3:7$ nên đặt $AB=3a; AC=7a$. Áp dụng hệ thức lượng trong tam giác vuông:
$\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}$
$\frac{1}{42^2}=\frac{1}{(3a)^2}+\frac{1}{(7a)^2}$
$\frac{1}{42^2}=\frac{58}{441a^2}$
$\Rightarrow a=2\sqrt{58}$ (cm)
$AB=3a=6\sqrt{58}$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{(6\sqrt{58})^2-42^2}=18$ (cm)
Chu vi $ABH$: $AB+BH+AH=6\sqrt{58}+18+42=60+6\sqrt{58}$ (cm)
$AC=7a=14\sqrt{58}$ (cm)
$HC=\sqrt{AC^2-AH^2}=\sqrt{(14\sqrt{58})^2-42^2}=98$ (cm)
$S_{AHC}=\frac{AH.HC}{2}=\frac{42.98}{2}=2058$ (cm vuông)
Cho tam giác ABC vuông tại A, đường cao AH. Biết AC = 15 cm, HC = 9 cm. Tính chu vi tam giác ABH và góc B là tròn đến độ.
\(BC=\dfrac{15^2}{9}=25\left(cm\right)\)
BH=25-9=16cm
\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
AB=căn(16^2+12^2)=20cm
C=16+12+20=28+20=48cm
Xét ΔABC vuông tại A có sin B=AC/BC=3/5
nên góc B=37 độ
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 3cm, AC = 4cm. Tính độ dài đường cao AH, tính c o s A C B ^ và chu vi tam giác ABH.
A. AH = 2,8 cm; c o s A C B ^ = 3 5
B. AH = 2,4 cm; c o s A C B ^ = 4 5
C. AH = 2,5 cm; c o s A C B ^ = 3 4
D. AH = 1,8 cm; c o s A C B ^ = 2 3
Áp dụng định lý Pytago trong ∆ ABC vuông tại A ta có:
Áp dụng hệ thức lượng trong ∆ ABC vuông tại A có đường cao AH ta có:
Đáp án cần chọn là: B
Cho tam giác ABC vuông tại A, đường cao AH a. Cho AH = 6; BH = 4. Tính AC, BC. b. Cho AB = 15; HC = 16. Tính BH, AC. c. Cho AH = 6; AB : AC = 3 : 4. Tính chu vi và diện tích tam giác ABC.
Cho tam giác ABC vuông tại A, ( AB< AC). Vẽ đường cao AH ( H thuộc BC)
a). Chứng minh tam giác ABH đồng dạng với tam giác ABC.
b). Tính AB. Biết BC = 10cm, BH = 3,6 cm.
c). Tìm tỉ số diện tích của tam giác ABH và tam giác ACH.
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b:AB=căn 3,6*10=6(cm)
c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>S HAB/S HCA=(AB/CA)^2
4. Cho \(\Delta\)ABC vuông tại A , đường cao AH. Biết AC=4cm, BC=5cm
a. Tính AB,AH,HB,HC
b. Tính diện tích, chu vi của tam giác ABC và đường trung tuyến AM
c. Kẻ đường cao MI của tam giác AMC. Tính Mi
a: AB=căn 5^2-4^2=3cm
Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC; AC^2=CH*BC; AH*BC=AB*AC
=>AH=3*4/5=2,4cm; BH=3^2/5=1,8cm
CH=5-1,8=3,2cm
b: C=3+4+5=12cm
S=1/2*3*4=6cm2
AM=BC/2=2,5cm
c: MA=MC=2,5cm
AC=4cm
ΔMAC cân tại M có MI là đường cao
nên I là trung điểm của AC
=>IA=IC=AC/2=2cm
MI=căn MA^2-IA^2=1,5cm
Cho tam giác ABC vuông tại A đường cao AH kẻ HE vuông góc với AB , HF vuông góc với AC
a)Tính EF biết BH=13.5cm CH=6cm
b)CMR: AE.AB=AF.AC
c)Qua A kẻ AK vuông góc với EF , AK cắt BC tại I
d)CMR:Nếu diện tích tam gúac ABC=2 lần diện tích tam giác AEHF thì tam giác ABC vuông cân
e)Biết chu vi tam giác ABH = 30cm chu vi tam giác ACH=40cm tình chu vi tam gúac ABC
Cho tam giác ABC vuông tại A, đường cao AH. Biết chu vi tam giác ABH bằng 30cm và chu vi ACH bằng 40cm. Tính chu vi tam giác ABC.
\(\Delta ABH\sim\Delta CAH\)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{C_{ABC}}{C_{CAH}}=\dfrac{30}{40}=\dfrac{3}{4}\)
=> \(\dfrac{AB^2}{9}=\dfrac{AC^2}{16}=\dfrac{BC^2}{25}\)
\(\Rightarrow\dfrac{AB}{3}=\dfrac{AC}{4}=\dfrac{BC}{5}\\\)
=> \(\dfrac{AB}{BC}=\dfrac{3}{5}\)
\(\Delta ABH\sim\Delta CBA\)
\(\Rightarrow\dfrac{C_{ABH}}{C_{ABC}}=\dfrac{AB}{BC}\)
=> Chu vi tam giác ABC là 30 . 5 : 3 = 50
Gọi a, b, c lần lượt là chu vi của các tam giác ABC, ABH, ACH.
Ta có: b = 30cm, c = 40cm
Xét hai tam giác vuông AHB và CHA, ta có:
Bài 1: hình chữ nhật có chiều dài 12cm, chiều rộng 8cm. Tính chu vi và diện tích HCN
bài 2: chu vi hcn bằng chu vi hình vuông cạnh 20cm. chiều dài hcn bằng 25cm. Tính diện tích hcn
bài 3: cho tam giác ABC có diện tích bằng 120cm2. Biết chiều cao AH =10cm . Tính độ dài cạnh BC.
Bài 4: cho tam giác ABC, AH là đường cao của tam giác ABC. biết AH =5cm, BC =8cm. Tính diện tích tam giác ABC.
Bài 1 Giải
Chu vi HCN là:
(12+8).2= 40(cm)
Diện tích HCN là:
12.8= 96(cm)
Bài 2 Chu vi hình vuông là:
20.4=80(cm)
Mà chu vi hình vuông bằng chu vi HCN nên:
Chiều rộng HCN là:
(80:2) -25=15(cm)
Diện tích HCN là:
15.25=375(cm)
Bài 3 Độ dài cạnh BC là:
120:10.2=24(cm)
Bài 4 Diện tích tam giác ABC là:
( 5.8):2 = 20(cm)
Chúc bn hok tốt~~