\(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)
AH=9*12/15=7,2cm
BH=9^2/15=5,4cm
\(C_{ABH}=7.2+5.4+9=21.6\left(cm\right)\)
\(S_{ABH}=\dfrac{1}{2}\cdot5.4\cdot7.2=3.6\cdot5.4=19.44\left(cm^2\right)\)
\(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)
AH=9*12/15=7,2cm
BH=9^2/15=5,4cm
\(C_{ABH}=7.2+5.4+9=21.6\left(cm\right)\)
\(S_{ABH}=\dfrac{1}{2}\cdot5.4\cdot7.2=3.6\cdot5.4=19.44\left(cm^2\right)\)
Cho tam giác ABC vuông tại A( AB>AC), đường cao AH. Gọi M là trung điểm của AB,AD là phân giác của góc BAH (D thuộc BH),MD cắt AH tại E.
a)Chứng minh rằng: \(\dfrac{AB^2}{BH}=\dfrac{AC^2}{CH}\)
b)Tính độ dài AH biết diện tích các tam giác AHC và ABH lần lượt là 8,64 cm2 và 15,36cm2 .
c) Chứng minh rằng: CE//AD
Cho tam giác ABC có AB = 6cm, AC = 4,5cm. BC = 7,5 cm
a) Chứng minh tam giác ABC vuông tại A. Tính các góc B, C và đường cao AH của tam giác đó
b) Hỏi rằng điểm M mà diện tích tam giác MBC bằng diện tích tam giác ABC nằm trên đường nào ?
Cho tam giác ABC vuông tại A có góc B = 30 độ, AB = 6cm
a) Giải tam giác vuông ABC
b) Kẻ đường cao AH và trung tuyến AM của tam giác ABC. Tính diện tích tam giác AHM
1. Cho tam giác ABC vuông tại A có AB = 9 cm , BC = 15 cm , AH là đường C10 ( H thuộc cạnh BC ) . Tính BH , CH , AC và AH ,
2. Cho tam giác ABC vuông tại A có AC = 5 cm , AB = 4 cm . Tính : a ) Cạnh huyền BC . b ) Hình chiếu của AB và AC trên cạnh huyền . c ) Đường cao AH .
3. Cho tam giác ABC vuông tại A có BC = 40 cm , AC = 36 cm . Tính AB , BH , CH và AH ,
4. Cho tam giác ABC vuông tại A có BC = 24 cm . Tính AB , AC , cho biết 2 AB = -AC .
5. Cho tam giác ABC vuông tại A có AH là đường cao . BH = 10 cm , CH = 42 cm . Tính BC , AH , AB và AC ,
6. Cho đường tròn tâm O bán kính R = 10 cm . A , B là hai điểm trên đường tròn ( O ) và I là trung điểm của đoạn thẳng AB . a ) Tính AB nếu OI = 7 cm . b ) Tính OI nếu AB = 14 cm .
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB= 9cm, BC= 15cm. Tính BH, HC
b) Biết BH= 1cm, HC= 3cm. Tính AB, AC
c) Biết AB= 6cm, AC= 8cm. Tính AH, BC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB= 3cm, BH= 2,4cm
a) Tính BC, AC, AH, HC b) Tính tỉ số lượng giác của góc B
Bài 3: Cho tam giác ABC có BC= 9cm, góc B= 60 độ, góc C= 40 độ, đường cao AH. Tính AH, AB, AC
cho tam giác ABC có độ cao các canh AB=5cm , AC=12cm , BC=13cm.
a,Tính đường cao AH
b,Tính diện tính hình tam giác
(( giúp mình với mình cần gấp ))
Cho tam giác ABC, AB=5cm,AC=12cm,BC=13cm. AH là đường cao tam giác ABC và AH vuông góc với BC
a, Chứng minh: Tam giác ABC là tam giác vuông và tính AH
b, Kẻ HE vuông góc với AB tại E và HF vuông góc với AC tại F. Chứng minh: AE.AB=AF.AC
c, Tam giác AEF đồng dạng tam giác ABC
d,\(\dfrac{EB}{FC}=(\dfrac{AB}{AC})^{3}\)
e, BC.BE.CF=\(AH^{3}\)
Cho tam giác cân ABC, AB = AC = 10 cm, BC = 16. Trên đường cao AH lấy điểm I sao cho \(AI=\dfrac{1}{3}AH\). Vẽ tia Cx song song với AH, Cx cắt tai BI tại D
a) Tính các góc của tam giác ABC
b) Tính diện tích tứ giác ABCD
cho tam giác ABC vuông ở A đường cao AH biết AH = 3cm; BC = 6,15cm. Tính AB, AC