Tìm tất cả cặp số nguyên tố (p,q) sao cho p2-2q2=1
Bài 2: Tìm số nguyên tố p và q sao cho
a) p2 - 2q2 = 17
q + qp là 1 số nguyên tố
Tìm các số nguyên tố p;q biết :
p2 - 2q2 = 1
Do \(2q^2\) luôn chẵn và 1 luôn lẻ \(\Rightarrow p^2\) lẻ \(\Rightarrow p\) lẻ
\(\Rightarrow p^2\equiv1\left(mod4\right)\)
\(\Rightarrow2q^2\equiv0\left(mod4\right)\)
\(\Rightarrow q^2⋮2\Rightarrow q⋮2\Rightarrow q=2\)
\(\Rightarrow p^2=9\Rightarrow p=3\)
Vậy \(\left(p;q\right)=\left(3;2\right)\)
Bài 1: Tìm x ∈ N biết
a) 72 - 7(x+1) = 42
b) (2x - 1)3 = 412 : 16
c) 6x + 5 chia hết cho (3x - 1)
d) x2 + 7 chia hết cho (2x2 + 1)
Bài 2: Tìm số nguyên tố p và q sao cho
a) p2 - 2q2 = 17
b) pq + qp là 1 số nguyên tố
1:
a: =>7(x+1)=72-16=56
=>x+1=8
=>x=7
b: (2x-1)^3=4^12:16=4^10
=>\(2x-1=\sqrt[3]{4^{10}}\)
=>\(2x=1+\sqrt[3]{4^{10}}\)
=>\(x=\dfrac{1+\sqrt[3]{4^{10}}}{2}\)(loại)
c: \(\Leftrightarrow6x-2+7⋮3x-1\)
=>3x-1 thuộc Ư(7)
mà x là số tự nhiên
nên 3x-1 thuộc {-1}
=>x=0
d: x^2+7 chia hết cho 2x^2+1
=>2x^2+14 chia hết cho 2x^2+1
=>2x^2+1+13 chia hết cho 2x^2+1
=>2x^2+1 thuộc Ư(13)
=>2x^2+1=1(Vì x là số tự nhiên)
=>x=0
Bài 1: Tìm x ∈ N biết
2
3 = 412 : 16
2 + 7 chia hết cho (2x2 + 1)
Bài 2: Tìm số nguyên tố p và q sao cho
a) p2 - 2q2 = 17
q + qp là 1 số nguyên tố
Bài 2 có lỗi không bạn?
q+qp> 2 mà đây là 1 số nguyên tố nên đây là số lẻ
mà dù q chẵn hay lẻ thì q+qp chẵn (vô lý)
Bài 1: Tìm x ∈ N biết
2
3 = 412 : 165
2 + 7 chia hết cho (2x2 + 1)
Bài 2: Tìm số nguyên tố p và q sao cho
a) p2 - 2q2 = 17
q + qp là 1 số nguyên tố
Bài 1: Tìm x ∈ N biết
2
3 = 412 : 16
2 + 7 chia hết cho (2x2 + 1)
Bài 2: Tìm số nguyên tố p và q sao cho
a) p2 - 2q2 = 17
q + qp là 1 số nguyên tố
Lưu ý, e mới sắp lên lớp 6, mn giải theo cách lớp 6 cho e với nhé ạ
Tìm tất cả các số nguyên tố p sao cho p2 + 11 có đúng 6 ƣớc số nguyên dƣơng.
Lời giải:
Nếu $p=2$ thì $p^2+11=15$ chỉ có 4 ước nguyên dương
Nếu $p=3$ thì $p^2+11=20$ có đúng 6 ước nguyên dương
Nếu $p>3$ thì $p$ lẻ
$\Rightarrow p^2\equiv 1\pmod 4$
$\Rightarrow p^2+11\equiv 12\equiv 0\pmod 4(1)$
$p^2\equiv 1\pmod 3$
$\Rightarrow p^2+11\equiv 12\equiv 0\pmod 3(2)$
Từ $(1);(2)$ suy ra $p^2+11\vdots 12$
Đặt $p^2+11=12k$ với $k$ là số tự nhiên lớn hơn $1$
Lúc này, $p^2+11$ có ít nhất các ước nguyên dương sau: $1,2,3,4,6,12,k, 2k, 3k,4k, 6k, 12k$ (nhiều hơn 6 ước nguyên dương rồi)
Vậy $p=3$
Tìm tất cả số nguyên tố p lẻ sao cho 2p4 - p2 + 16 là số chính phương
Với \(p=2\) thì \(2p^4-p^2+16=44\) không là số chính phương.
Với \(p=3\) thì \(2p^4-p^2+16=169\) là số chính phương.
Với \(p\ge5\), suy ra \(p⋮̸3\). Dễ dàng kiểm chứng \(p^2\equiv1\left(mod3\right)\) còn \(2p^4\equiv2\left(mod3\right)\). Lại có \(16\equiv1\left(mod3\right)\) nên \(2p^4-p^2+16\equiv2\left(mod3\right)\), do đó \(2p^4-p^2+16\) không thể là số chính phương.
Như vậy, số nguyên tố \(p\) duy nhất thỏa mãn ycbt là \(p=3\)
Mình quên mất là không cần xét \(p=2\) đâu vì đề bài cho \(p\) nguyên tố lẻ.
Tìm tất cả các bộ số nguyên tố (p1,p2,p3) sao cho p1< p2 < p3 và p1p2p3 < p1p2 + p2p3+ p3p1