Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Jack Viet
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 4 2021 lúc 2:23

ĐKXĐ: ...

\(\Leftrightarrow m^2+m\left(x^2-3x-4\right)-m\sqrt{x+7}-\left(x^2-3x-4\right)\sqrt{x+7}=0\)

\(\Leftrightarrow m\left(x^2-3x-4+m\right)-\sqrt{x+7}\left(x^2-3x-4+m\right)=0\)

\(\Leftrightarrow\left(m-\sqrt{x+7}\right)\left(x^2-3x-4+m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{x+7}\left(1\right)\\m=-x^2+3x+4\left(2\right)\end{matrix}\right.\)

Với \(m\) nguyên tố \(\Rightarrow\) (1) luôn có đúng 1 nghiệm

Để pt có số nghiệm nhiều nhất \(\Rightarrow\) (2) có 2 nghiệm pb

\(\Rightarrow y=m\) cắt \(y=-x^2+3x+4\) tại 2 điểm pb thỏa mãn \(x\ge-7\)

\(\Rightarrow-66\le m\le\dfrac{25}{4}\Rightarrow m=\left\{2;3;5\right\}\)

Kim Khánh Linh
Xem chi tiết
Nguyễn Huy Tú
18 tháng 5 2021 lúc 19:10

Bài 2 : 

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\\x_1x_2=\frac{c}{a}=-4\end{cases}}\)

mà \(\left(x_1+x_2\right)^2=4\Rightarrow x_1^2+x_2^2=4+8=12\)

Ta có : \(T=x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)\)

\(=x_1^2-2x_2x_1+x_2^2-2x_1x_2=12+16=28\)

Khách vãng lai đã xóa
Kamato Heiji
Xem chi tiết
Bùi Thanh Tâm
Xem chi tiết
Light Stars
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 3 2022 lúc 22:14

Đặt \(f\left(x\right)=x^5+x^2-\left(m^2+2\right)x-1\)

Hàm \(f\left(x\right)\) liên tục trên R

\(f\left(0\right)=-1< 0\)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(x^5+x^2-\left(m^2+2\right)x-1\right)\)

\(=\lim\limits_{x\rightarrow+\infty}x^5\left(1+\dfrac{1}{x^3}-\dfrac{m^2+2}{x^4}-\dfrac{1}{x^5}\right)=+\infty.1=+\infty\)

\(\Rightarrow\) Luôn tồn tại \(a>0\) sao cho \(f\left(a\right)>0\Rightarrow f\left(0\right).f\left(a\right)< 0\Rightarrow\) pt luôn có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)

\(f\left(-1\right)=m^2+1>0;\forall m\Rightarrow f\left(-1\right).f\left(0\right)< 0\Rightarrow\) pt luôn có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)

\(\lim\limits_{x\rightarrow-\infty}\left(x^5+x^2-\left(m^2+2\right)x-1\right)=\lim\limits_{x\rightarrow-\infty}x^5\left(1+\dfrac{1}{x^3}-\dfrac{m^2+2}{x^4}-\dfrac{1}{x^5}\right)=-\infty.1=-\infty\)

\(\Rightarrow\) Luôn tồn tại \(b< 0\) sao cho \(f\left(b\right)< 0\Rightarrow f\left(b\right).f\left(-1\right)< 0\Rightarrow\) pt luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;-1\right)\)

Vậy pt đã cho luôn có ít nhất 3 nghiệm thực

tống thị quỳnh
Xem chi tiết
Rồng Lửa Ngạo Mạng
Xem chi tiết
Kinder
Xem chi tiết
Lê Thị Thục Hiền
11 tháng 6 2021 lúc 15:20

Sai đề.

Tại a=3 thay vào pt ban đầu \(\Rightarrow\left(x^2+3x+1\right)^2+3\left(x^2+3x+1\right)+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+3x+1=\dfrac{-3+\sqrt{5}}{2}\\x^2+3x+1=\dfrac{-3-\sqrt{5}}{2}\end{matrix}\right.\) 

\(\Leftrightarrow\left[{}\begin{matrix}x^2+3x+\dfrac{5-\sqrt{5}}{2}=0\left(1\right)\\x^2+3x+\dfrac{5+\sqrt{5}}{2}=0\left(2\right)\end{matrix}\right.\)

Bấm máy thấy pt (1) có hai nghiệm, pt (2) vô nghiệm => Tại a=3 thì pt ban đầu có 2 nghiệm (Trái với điều phải cm)

Lê Song Phương
Xem chi tiết