Cho pt: (m+1)2+2(m-1)x+m-2=0
a) tìm m để pt trên vô nghiệm
Câu 1: Cho 3 điểm A, B, C không thẳng hàng và điểm M thỏa mãn đẳng thức vecto \(\overrightarrow{MA}\)=x\(\overrightarrow{MB}\)+y\(\overrightarrow{MC}\)
Tính giá trị biểu thức P=x+y
A. P=0
B. P=2
C. P=-2
D. P=3
Câu 2: Cho hình chữ nhật ABCD và số thực k>0. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right|\)=k là
A. một đoạn thẳng
B. một đường thẳng
C. một đường tròn
D. một điểm
Cho hàm số y=-x2+4x-3 (1)
a) lập bảng biến thiên và vẽ đồ thị của hàm số
b) dựa vào đồ thị hàm số trên hãy tìm m để pt:-x2+4x-3+m=0 có hai no pb
Tìm m để pt: (m+1)2x+1-m=(7m-5)x vô nghiệm
Cho hình chữ nhật ABCD và số thực k>0.Tập hợp các điểm M thỏa mãn đẳng thức :
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right|=k\)
Câu 1: cho hình chữ nhật ABCD và I là giao điểm của 2 đường chéo. Tập hợp các điểm M thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MC}+\overrightarrow{MD}\right|\) là
A. trung trực của đoạn thẳng AB
B. trung trực của đoạn thẳng AD
C. đường tròn tâm I, bán kính \(\dfrac{AC}{2}\)
D. đường tròn tâm I, bán kính \(\dfrac{AB+BC}{2}\)
Câu 2: cho 2 điểm A, B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|2\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|\) là
A. đường trung trực của đoạn thẳng AB
B. đường tròn đường kính AB
C. đường trung trực đoạn thẳng IA
D. đường tròn tâm A, bán kính AB
C1: Cho tam giác ABC để M, N, P thõa mãn:
Vec tơ MA = 2 MB
Vec tơ MB = 2/3 MC
Vec tơ MC =3/4 MA
a)Xác định M, N, P
b) Chứng minh M, N, P thẳng hàng
C2: Cho tam giác ABC, xác định điểm M thỏa mãn điều kiện:
Véc tơ MA + 3MB +2 MC = Véc tơ 0 và chứng minh mọi điểm O ta có Véc tơ OM = 1/6 Véc tơ OA + 1/2 Véc tơ OB + 1/3 Véc tơ OC.
MỌI NGƯỜI GIÚP EM VỚI Ạ< EM ĐANG CẦN GẤP TT
Cho tam giác ABC có G là trọng tâm, I là trug điểm AB, M thuộc cạnh AB sao cho \(\overrightarrow{MA}+3\overrightarrow{MB}=0\).
a, CMR; \(\overrightarrow{MC}+2\overrightarrow{MI}=3\overrightarrow{MG}\)
b, Giả sử điểm N t/m: \(\overrightarrow{AN}=x\overrightarrow{AC}\). Tìm x để M,N,G thẳng hàng
Cho tứ giác ABCD. Gọi E,F lần lượt là trung điểm AB, CD và O là trung điểm EF. Xác định điểm M sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right|\) đạt giá trị nhỏ nhất