Cho 2a+3b/5a-b=1/2.Hay tinh a/b
1.cho a^2-b^2=4c^2.CM: (5a-3b+8c)(5a-3b-8c)=(3a-5b)^2
2.cho a^2+b^2+c^2=2017. Tính M=(2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2
a, Vì \(a^2-b^2=4c^2\Rightarrow16a^2-16b^2=64c^2\) (1)
Ta có:\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(5a-3b\right)^2-\left(8c\right)^2\)
\(=25a^2-30ab+9b^2-64c^2\) (2)
Thay (1) vào (2) ta được
\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=25a^2-30ab+9b^2-16a^2+16b^2\)
\(=9a^2-30ab+25b^2=\left(3a-5b\right)^2\)
=> đpcm
b, \(M=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2b-b\right)^2\)
\(=4a^2+4b^2+c^2+4b^2+4c^2+a^2+4c^2+4a^2+b^2\)
\(+8ab-4ac-4bc+8bc-4ab-4ac+8ac-4bc-4ab\)
\(=9.\left(a^2+b^2+c^2\right)=9.2017=18153\)
Vậy M=18153
a)Chứng minh rằng với mọi a và b thì
a^4 - 2a^3b+2a^2b^2 - 2ab^3+ b^4 lớn hơn hoăc bằng 0
b) Cho a^2 = b^2+c^2. Chứng minh rằng (5a - 3b+ 4c)(5a - 3b - 4c) lớn hơn hoặc bằng 0
1. Cho \(a,b,c>0\) và \(ab+bc+ca=abc\). Chứng minh rằng:
\(\dfrac{1}{a+3b+2c}+\dfrac{1}{b+3c+2a}+\dfrac{1}{c+3a+2b}\le\dfrac{1}{6}\)
2. Cho \(a,b\ge0\) và \(a+b=2\) Tìm Max
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+20ab\)
Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)
CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)
\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)
Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)
Dấu = xảy ra khi a=b=c=3
Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)
\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)
Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)
\(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)
\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)
Vậy...
2,
\(ab\le\dfrac{1}{4}\left(a+b\right)^2=1\Rightarrow0\le ab\le1\)
\(E=9a^2b^2+6\left(a^3+b^3\right)+5ab\left(a+b\right)+24ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+5ab\left(a+b\right)+24ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(ab=x\Rightarrow0\le x\le1\)
\(E=9x^2-2x+48=\left(x-1\right)\left(9x+7\right)+55\le55\)
\(E_{max}=55\) khi \(x=1\) hay \(a=b=1\)
1: Cho a^2 + b^2 + c^2 = a^3 + b^3 + c^3 = 1. tinh gt cac bieu thuc : C = a^2 + b^9 + c^1945.
2: Cho hai so a va b thoa man: a^3 – 3a^2 + 5a – 17 = 0 va b^3 – 3b^2 + 5b + 11 = 0.hay tinh : D = a + b.
3: Cho a^3 – 3ab^2 = 19 va b^3 – 3a^2b = 98. hay tinh : E = a^2 + b^2.
Please...!!!! 1 bài thôi cgx đc nha (tốt nhất là cả) ^_^
rút gọn theo quy tắc đấu ngoặc
A =(a+b-2c) -(-a+b+c) -(2a-b-c)
B=-(2a-b+c) + (b-2c-3a) -(-5a-3c+b)
C=(3a-b-2c)-( 2b+3c-a) +(2a-3b)
D=(5a-3b+c) +( 2a-3b+5) -( b-c+a)
A =(a+b-2c) -(-a+b+c) -(2a-b-c)
= a+b-2c+a-b-c-2a+b+c
= b-2c
B=-(2a-b+c) + (b-2c-3a) -(-5a-3c+b)
= -2a+b-c+b-2c-3a+5a+3c-b
= b-c
C=(3a-b-2c)-( 2b+3c-a) +(2a-3b)
= a-b-2c-2b-3c+a+2a-3b
= -6b-5c
D=(5a-3b+c) +( 2a-3b+5) -( b-c+a)
= 5a-3b+c+2a-3b+5-b+c-a
= 6a-7b+2c
\(A=\left(a+b-2c\right)-\left(-a+b+c\right)-\left(2a-b-c\right)\)
\(=a+b-2c+a-b-c-2a+b+c=b-2c\)
\(B=-\left(2a-b+c\right)+\left(b-2c-3a\right)-\left(-5a-3c+b\right)\)
\(=-2a+b-c+b-2c-3a+5a+3c-b=b\)
\(C=\left(3a-b-2c\right)-\left(2b+3c-a\right)+\left(2a-3b\right)\)
\(=3a-b-2c-2b-3c+a+2a-3b=6a-6b-5c\)
\(D=\left(5a-3b+c\right)+\left(2a-3b+5\right)-\left(b-c+a\right)\)
\(=5a-3b+c+2a-3b+5-b+c-a=6a-7b+2c\)
Cho a/b = 10/3
Tính :
a)G = (3a-2b)/(a-3b)
b) H = ( (2a-3b)/(4a+3b) ) - ((5a-4b)/(3a+b))
a) \(G=\frac{\frac{3a}{b}-\frac{2b}{b}}{\frac{a}{b}-\frac{3b}{b}}=\frac{3.\frac{10}{3}-2}{\frac{10}{3}-3}=\frac{10-2}{\frac{1}{3}}=24\)
b) \(H_1=\frac{\frac{2a-3b}{b}}{\frac{4a+3b}{b}}=\frac{\frac{2a}{b}-\frac{3b}{b}}{\frac{4a}{b}+\frac{3b}{b}}=\frac{2.\frac{10}{3}-3}{4.\frac{10}{3}+3}=\frac{\frac{11}{3}}{\frac{49}{3}}=\frac{11}{49}\)
\(H_2=\frac{\frac{5a-4b}{b}}{\frac{3a+b}{b}}=\frac{5.\frac{a}{b}-4}{3.\frac{a}{b}+1}=\frac{5.\frac{10}{3}-4}{3.\frac{10}{3}+1}=\frac{\frac{38}{3}}{\frac{33}{3}}=\frac{38}{33}\)
=> \(H=\frac{11}{49}-\frac{38}{33}=\frac{-1499}{1617}\)
Thu gọn biểu thức rồi tính giá trị:
a) Cho a=-2, b=-3
A=2*(a-b)-3*(2a+3b)
b)cho a=-4, b=-2
B=(5a-3b)-(4a+26)-2*a-b
a) Thu gọn:
\(A=2.\left(a-b\right)-3.\left(2a+3b\right)\)
\(A=2a-2b-6a-9b\)
\(A=-4a-11b\)
Tính giá trị, thay a = -2; b = -3 vào biểu thứ ta có:
\(A=-4.\left(-2\right)-11.\left(-3\right)\)
\(A=8+33\)
\(A=41\)
b) Thu gọn:
\(B=\left(5a-3b\right)-\left(4a+26\right)-2a-b\)
\(B=5a-3b-4a-26-2a-b\)
\(B=-a-2b-26\)
Tính giá trị, thay a = -4; b = -2 vào biểu thứ ta có:
\(B=4-2.\left(-4\right)-26\)
\(B=-14\)
hok tốt!!
Cho hai vectơ a → và b → khác vecto không và thảo mãn u → = a → + b → vuông góc với vecto v → = 2 a → - 3 b → và m → = 5 a → - 3 b → vuông góc với n → = - 2 a → + 7 b → . Tính góc tạo bởi hai vecto a → và b →
A. 60 °
B. 45 °
C. 90 °
D. 30 °