Tìm x biết: (\(\dfrac{2}{15}\)+\(\dfrac{2}{35}\)+\(\dfrac{2}{63}\)):x =
Tìm x biết: (\(\dfrac{2}{15}\)+\(\dfrac{2}{35}\)+\(\dfrac{2}{63}\)):x= \(\dfrac{1}{18}\)..
( \(\dfrac{2}{15}\) + \(\dfrac{2}{35}\) + \(\dfrac{2}{63}\)) : \(x\) = \(\dfrac{1}{18}\)
( \(\dfrac{2\times7}{15\times7}\) + \(\dfrac{2\times3}{35\times3}\) + \(\dfrac{2}{63}\)) : \(x\) = \(\dfrac{1}{18}\)
(\(\dfrac{14}{105}\) + \(\dfrac{6}{105}\) + \(\dfrac{2}{63}\)) : \(x\) = \(\dfrac{1}{18}\)
(\(\dfrac{20}{105}\) + \(\dfrac{2}{63}\)) : \(x\) = \(\dfrac{1}{18}\)
( \(\dfrac{4}{21}\) + \(\dfrac{2}{63}\)) : \(x\) = \(\dfrac{1}{18}\)
(\(\dfrac{12}{63}\) + \(\dfrac{2}{63}\)) : \(x\) = \(\dfrac{1}{18}\)
\(\dfrac{2}{9}\) : \(x\) = \(\dfrac{1}{18}\)
\(x\) = \(\dfrac{2}{9}\) : \(\dfrac{1}{18}\)
\(x\) = 4
( 215152 + 235352 + 263632) : �x = 118181
( 2×715×715×72×7 + 2×335×335×32×3 + 263632) : �x = 118181
(1410510514 + 61051056 + 263632) : �x = 118181
(2010510520 + 263632) : �x = 118181
( 421214 + 263632) : �x = 118181
(12636312 + 263632) : �x = 118181
2992 : �x = 118181
�x = 2992 : 118181
�x = 4
Tìm x: x- (\(\dfrac{2+2+2+2 }{3+15+35+63}\))= \(\dfrac{1}{9}\)
Có: \(x=\dfrac{1}{9}+\dfrac{8}{116}=\dfrac{1}{9}+\dfrac{2}{29}=\dfrac{47}{261}\)
\(x-\left(\dfrac{2+2+2+2}{3+15+35+63}\right)=\dfrac{1}{9}\)
\(\Leftrightarrow x=\dfrac{1}{9}+\dfrac{2}{29}=\dfrac{47}{261}\)
\(\dfrac{2}{3}x+\dfrac{2}{15}x+\dfrac{2}{35}x+\dfrac{2}{63}x+\dfrac{99}{x}=-\dfrac{3}{7}\)
=>x(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9)+99/x=-3/7
=>8/9x+99/x=-3/7
\(\Leftrightarrow\dfrac{8x}{9}+\dfrac{99}{x}=\dfrac{-3}{7}\)
\(\Leftrightarrow\dfrac{8x^2+99\cdot9}{9x}=\dfrac{-3}{7}\)
\(\Leftrightarrow-56x^2-6237=27x\)
hay \(x\in\varnothing\)
tìm x biết \(\left|x-\dfrac{1}{3}\right|+\left|x-\dfrac{1}{15}\right|+\left|x-\dfrac{1}{35}\right|+\left|x-\dfrac{1}{63}\right|+...+\left|x-\dfrac{1}{399}\right|=-11x\)
Lời giải:
Vế trái luôn không âm (tính chất trị tuyệt đối)
$\Rightarrow -11x\geq 0$
$\Rightarrow x\leq 0$
Do đó: $x-\frac{1}{3}, x-\frac{1}{15},..., x-\frac{1}{399}<0$
PT trở thành:
$\frac{1}{3}-x+\frac{1}{15}-x+...+\frac{1}{399}-x=-11x$
$(\frac{1}{3}+\frac{1}{15}+...+\frac{1}{399})-10x=-11x$
$\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}=-x$
$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{19}-\frac{1}{21})=-x$
$\frac{1}{2}(1-\frac{1}{21})=-x$
$\frac{10}{21}=-x$
$\Rightarrow x=\frac{-10}{21}$
Lời giải:
Vế trái luôn không âm (tính chất trị tuyệt đối)
$\Rightarrow -11x\geq 0$
$\Rightarrow x\leq 0$
Do đó: $x-\frac{1}{3}, x-\frac{1}{15},..., x-\frac{1}{399}<0$
PT trở thành:
$\frac{1}{3}-x+\frac{1}{15}-x+...+\frac{1}{399}-x=-11x$
$(\frac{1}{3}+\frac{1}{15}+...+\frac{1}{399})-10x=-11x$
$\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}=-x$
$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{19}-\frac{1}{21})=-x$
$\frac{1}{2}(1-\frac{1}{21})=-x$
$\frac{10}{21}=-x$
$\Rightarrow x=\frac{-10}{21}$
giai phuong trinh\(\dfrac{1}{x^2+4x+3}+\dfrac{1}{x^2+8x+15}+\dfrac{1}{x^2+12x+35}+\dfrac{1}{x^2+16x+63}=\dfrac{1}{5}\)
b) \(\left(x-3\right)^2+3x-22=\sqrt{x^2-3x+7}\)
\(\Leftrightarrow x^2-6x+9+3x-22=\sqrt{x^2-3x+7}\)
\(\Leftrightarrow\left(x^2-3x+7\right)-\sqrt{x^2-3x+7}-20=0\)
Đặt \(\sqrt{x^2-3x+7}=t\left(t\ge0\right)\left(1\right)\)
\(\Rightarrow t^2-t-20=0\)
\(\Rightarrow x_1=5\left(TM\right);x_2=-4\left(KTM\right)\)
Thay t=5 vào (1), ta có :
\(\sqrt{x^2-3x+7}=5\)
\(\Leftrightarrow x^2-3x+7=25\)
\(\Leftrightarrow x^2-3x-18=0\)
\(\Rightarrow x_1=6;x_2=-3\)
vậy...
\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+7\right)}+\dfrac{1}{\left(x+7\right)\left(x+9\right)}=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+7}+\dfrac{1}{x+7}-\dfrac{1}{x+9}=\dfrac{2}{5}\)
=>\(\dfrac{x+9-x-1}{\left(x+9\right)\left(x+1\right)}=\dfrac{2}{5}\)
\(\Leftrightarrow2\left(x^2+10x+9\right)=5\cdot8=40\)
=>x^2+10x+9=20
=>x^2+10x-11=0
=>(x+10)(x-1)=0
=>x=1 hoặc x=-10
Tìm x :
\(\dfrac{4}{15}+\dfrac{4}{35}+\dfrac{4}{63}+...+\dfrac{4}{399}=\dfrac{x}{49}\)
Giải:
\(\dfrac{4}{15}+\dfrac{4}{35}+\dfrac{4}{63}+...+\dfrac{4}{399}=\dfrac{x}{49}\)
\(\dfrac{4}{3.5}+\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{19.21}=\dfrac{x}{49}\)
\(2.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{19.21}\right)=\dfrac{x}{49}\)
\(2.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{19}-\dfrac{1}{21}\right)=\dfrac{x}{49}\)
\(2.\left(\dfrac{1}{3}-\dfrac{1}{21}\right)=\dfrac{x}{49}\)
\(2.\dfrac{2}{7}=\dfrac{x}{49}\)
\(\dfrac{4}{7}=\dfrac{x}{49}\)
\(\Rightarrow x=\dfrac{4.49}{7}=28\)
Chúc bạn học tốt!
\(\dfrac{4}{15}+\dfrac{4}{35}+...+\dfrac{4}{399}=\dfrac{x}{49}\)
2 . \(\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{399}=\dfrac{x}{49}\)
2 . \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{19.21}=\dfrac{x}{49}\)
2 . ( \(\dfrac{1}{3}-\dfrac{1}{21}\) ) = \(\dfrac{x}{49}\)
2 . \(\dfrac{2}{7}\) = \(\dfrac{x}{49}\)
=> \(\dfrac{4}{7}=\dfrac{x}{49}\)
=> \(\dfrac{21}{49}=\dfrac{x}{49}\)
=> \(x=21\)
Vậy \(x=21\)
Tìm x :
\(\dfrac{4}{15}\) + \(\dfrac{4}{35}\) + \(\dfrac{4}{63}\) + ... + \(\dfrac{4}{399}\) = \(\dfrac{x}{49}\)
Ta có : \(\dfrac{4}{15}+\dfrac{4}{35}+\dfrac{4}{63}+...+\dfrac{4}{399}=\dfrac{x}{49}\)
\(\Leftrightarrow2\cdot\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{19.21}\right)=\dfrac{x}{49}\)
\(\Leftrightarrow\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{19}-\dfrac{1}{21}=\dfrac{x}{98}\)
\(\Leftrightarrow\dfrac{1}{3}-\dfrac{1}{21}=\dfrac{x}{98}\)
\(\Leftrightarrow\dfrac{2}{7}=\dfrac{x}{98}\Rightarrow x=28\)
Vậy $x=28$
Giải phương trình: \(\dfrac{1}{x^2+4x+3}+\dfrac{1}{x^2+8x+15}+\dfrac{1}{x^2+12x+35}+\dfrac{1}{x^2+16x+63}=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{2}{\left(x+1\right)\left(x+3\right)}+\dfrac{2}{\left(x+3\right)\left(x+5\right)}+\dfrac{2}{\left(x+5\right)\left(x+7\right)}+\dfrac{2}{\left(x+7\right)\left(x+9\right)}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+7}+\dfrac{1}{x+7}-\dfrac{1}{x+9}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+9}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{x+9-x-1}{\left(x+1\right)\left(x+9\right)}=\dfrac{2}{5}\)
=>2(x+1)(x+9)=5*8=40
=>x^2+9x+9=20
=>x^2+9x-11=0
hay \(x=\dfrac{-9\pm5\sqrt{5}}{2}\)
=>x^2+9x
A=\(\dfrac{2}{15}\)+\(\dfrac{2}{35}\)+\(\dfrac{2}{63}\)+...+\(\dfrac{2}{399}\)
`A =2/15 +2/35 +2/63 +... +2/339`
`= 2/(3.5) +2/(5.7) + 2/(7.9) + ...+2/(19.21)`
`= 1/3 -1/5 +1/5 -1/7 +1/7 -1/9 +... 1/19 -1/21`
`= 1/3 -1/21 = 7/21 -1/21`
`=6/21 = 2/7`
sai rồi,2/7 mới đúng,bài này không cần nhân 2