(2x+3). (3x+5) =0
a.(2x-3) (3x+6) > 0
b.(3x+4) (2x-6) < 0
c.(3x+5) (2x+4) > 4
d.(3x+4) (x-2) <0
e.(x+4) (2x-4) > 0
f.(4x-8) (2x+5) < 0
g.(2x-3) (3x+6) _> 0
h.(3x-7) (x+1) <_ 0
a: (2x-3)(3x+6)>0
=>(2x-3)(x+2)>0
=>x<-2 hoặc x>3/2
b: (3x+4)(2x-6)<0
=>(3x+4)(x-3)<0
=>-4/3<x<3
c: (3x+5)(2x+4)>4
\(\Leftrightarrow6x^2+12x+10x+20-4>0\)
\(\Leftrightarrow6x^2+22x+16>0\)
=>\(6x^2+6x+16x+16>0\)
=>(x+1)(3x+8)>0
=>x>-1 hoặc x<-8/3
f: (4x-8)(2x+5)<0
=>(x-2)(2x+5)<0
=>-5/2<x<2
h: (3x-7)(x+1)<=0
=>x+1>=0 và 3x-7<=0
=>-1<=x<=7/3
1)4x-20=0 ; 2) 5x+15=0 ; 3) 3x-5=7x+2 ; 4) 4x-(x-1)=2(1+x) ; 5) x2 -2x=0 ; 6) 2(3x-5)-3(x-2)=3(x+4) ; 7) (x+3)(2x-7)=0
8) 5x(x-3)+2x-6=0 ; 9) (3x-1)(2x-1)-(3x-1)(x+2)=0
10)|2x-1|+1=8 ; 11) |x-2|=3x+1 ; 12) |2x|=21-x
Giải các phương trình nha mọi người ^_^
tìm x thuộc z
1)(-3x+2)-(5-3x)=-3
2) 3+x-(3x-1)=6-2x
3) (x-5).(3x+4)=0
4) 7x.(2x-1)=0
5) (3x-1).2x=0
giúp mik với mai mik đi học rùi :((
\(\left(-3x+2\right)-\left(5-3x\right)=-3\)
\(\Rightarrow-3x+2-5+3x=-3\)
\(\Rightarrow-3x+3x=-3+5-2\)
\(\Rightarrow0x=0\Rightarrow x\in Z\)
\(3+x-\left(3x-1\right)=6-2x\)
\(\Rightarrow3+x-3x+1=6-2x\)
\(\Rightarrow x-3x+2x=6-1-3\)
\(\Rightarrow0x=2\left(loại\right)\)
\(\left(x-5\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\3x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-\frac{4}{3}\end{cases}}}\)
\(7x\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}7x=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
\(\left(3x-1\right)2x=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=0\end{cases}}}\)
khó hiểu quá
bạn ghi bằng số luôn đừng ghi phần
\(\left(-3x+2\right)-\left(5-3x\right)=-3\)
\(\Rightarrow-3x+2-5+3x=-3\)
\(\Rightarrow-3=-3\)
\(\forall x\in Z\)
\(3+x-\left(3x-1\right)=6-2x\)
\(\Rightarrow2=6\left(vl\right)\)
\(\left(x-5\right)\left(3x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\3x+4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=\frac{4}{3}\end{cases}}\)
\(7x\left(2x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7x=0\\2x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)
\(\left(3x-1\right)2x=0\)
\(\Rightarrow\orbr{\begin{cases}3x-1=0\\2x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=0\end{cases}}\)
Giải phương trình
1) 16-8x=0
2) 7x+14=0
3) 5-2x=0
4) 3x-5=7
5) 8-3x=6
6) 8=11x+6
7)-9+2x=0
8) 7x+2=0
9) 5x-6=6+2x
10) 10+2x=3x-7
11) 5x-3=16-8x
12)-7-5x=8+9x
13) 18-5x=7+3x
14) 9-7x=-4x+3
15) 11-11x=21-5x
16) 2(-7+3x)=5-(x+2)
17) 5(8+3x)+2(3x-8)=0
18) 3(2x-1)-3x+1=0
19)-4(x-3)=6x+(x-3)
20)-5-(x+3)=2-5x
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
1) 16 - 8x = 0 ⇔ 8(2 - x) = 0⇔ 2 - x = 0 ⇔ x = 2
Vậy phương trình có nghiệm là x = 2
d) (3x – 5)(7 – 5x) – (5x + 2)(2 – 3x) = 4 g) 3(2x - 1)(3x - 1) - (2x - 3)(9x - 1) =0 j) (2x – 1)(3x + 1) – (4 – 3x)(3 – 2x) = 3 k) (2x + 1)(x + 3) – (x – 5)(7 + 2x) = 8 m) 2(3x – 1)(2x + 5) – 6(2x – 1)(x + 2) = - 6
g: Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)
\(\Leftrightarrow14x=0\)
hay x=0
Tìm x:
a, 3x (4x -3) - 2x (5-6x) = 0
b, 5 (2x-3) + 4x (x-2) + 2x (3-2x) = 0
c, 3x (2-x) + 2x (x-1) = 5x (x+3)
d, 3x (x+1) - 5x (3-x) + 6(x2 + 2x + 3) = 0
a) 3x(4x - 3) - 2x(5 - 6x) = 0
=> 6x2 - 9x - 10x + 12x2 = 0
=> 18x2 - 19x = 0
=> x(18x - 19) = 0
=> \(\orbr{\begin{cases}x=0\\18x-19=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{19}{18}\end{cases}}\)
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
=> 10x - 15 + 4x2 - 8x + 6x - 4x2 = 0
=> 8x - 15 = 0
=> 8x = 15
=> x = 15 : 8 = 15/8
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
=> 6x - 3x2 + 2x2 - 2x = 5x2 + 15x
=> 4x - x2 - 5x2 - 15x = 0
=> -6x2 - 11x = 0
=> -x(6x - 11) = 0
=> \(\orbr{\begin{cases}-x=0\\6x-11=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{11}{6}\end{cases}}\)
a) \(3x\left(4x-3\right)-2x\left(5-6x\right)=0\)
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow-19x=0\Leftrightarrow x=0\)
b) \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)
\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)
\(\Leftrightarrow8x-15=0\Leftrightarrow x=\frac{15}{8}\)
d) \(3x\left(x+1\right)-5x\left(3-x\right)+6\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow3x^2+3x-15x+5x^2+6x^2+12x+18=0\)
\(\Leftrightarrow14x^2+18=0\)
Mà \(14x^2+18>0\)nên pt vô nghiệm
Tìm x, biết:
a) 3x(4x-3) - 2x(5-6x) = 0
b) 5(2x-3) + 4x(x-2) + 2x(3-2x) = 0
c) 3x(2-x) + 2x(x-1) = 5x(x+3)
d) 3x(x+1) - 5x(3-x) + 6(x2 + 2x + 3) = 0
a) Ta có: 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{19}{24}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;\frac{19}{24}\right\}\)
b) Ta có: \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)
\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)
\(\Leftrightarrow8x-15=0\)
\(\Leftrightarrow8x=15\)
hay \(x=\frac{15}{8}\)
Vậy: \(x=\frac{15}{8}\)
c) Ta có: \(3x\left(2-x\right)+2x\left(x-1\right)=5x\left(x+3\right)\)
\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\)
\(\Leftrightarrow-x^2+4x-5x^2-15x=0\)
\(\Leftrightarrow-6x^2-11x=0\)
\(\Leftrightarrow6x^2+11x=0\)
\(\Leftrightarrow x\left(6x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{-11}{6}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;\frac{-11}{6}\right\}\)
d) Ta có: \(3x\left(x+1\right)-5x\left(3-x\right)+6\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow3x^2+3x-15x+5x^2+6x^2+12x+18=0\)
\(\Leftrightarrow14x^2+18=0\)
\(\Leftrightarrow14x^2=-18\)
mà \(14x^2\ge0\forall x\)
nên \(x\in\varnothing\)
Vậy: \(x\in\varnothing\)
Giải phương trình :
a)(2x-5)^3-(3x-4)^x+(x+1)^3=0
b)(x-1)^3+(2x-3)^3+(3x-5)^3 - 3(x-1)(2x-3)(3x-5) = 0
c)(x^2+3x-4)^3 + (3x^2+7x+4)^3 = (4x^2+10x)^3
giải pt: x^5 + 2x^4 +3x^3 + 3x^2 + 2x +1=0
giải pt: x^4 + 3x^3 - 2x^2 +x - 3=0
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
(x-1)3+(2x-3)3+(3x-5)3-3(x-1)(2x-3)(3x-5)=0
Ta có (a3 + b3) + c3 - 3abc = 0
<=> (a + b)3 - 3ab(a + b) + c3 - 3abc = 0
<=> (a + b + c)[(a + b)2 - (a + b)c + c2] - 3ab(a + b + c) = 0
<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0
<=> (a + b + c).(2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc) = 0
<=> (a + b + c)[(a - b)2 + (b - c)2 + (c - a)2] = 0 (1)
Áp dụng (1) cho bài toán ta được
(x - 1)3 + (2x - 3)3 + (3x - 5)3 - 3(x - 1)(2x - 3)(3x - 5) = 0
<=> (6x - 9)[(x - 2)2 + (x - 2)2 + (2x - 4)2] = 0
<=> \(\left[{}\begin{matrix}6x-9=0\\\left(x-2\right)^2+\left(x-2\right)^2+\left(2x-4\right)^2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{3}{2}\\6.\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\)
<=> (a + b)3 - 3ab(a + b) + c3 - 3abc = 0
<=> (a + b + c)[(a + b)2 - (a + b)c + c2] - 3ab(a + b + c) = 0
<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0
<=> (a + b + c).(2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc) = 0
<=> (a + b + c)[(a - b)2 + (b - c)2 + (c - a)2] = 0 (1)
Áp dụng (1) cho bài toán ta được
(x - 1)3 + (2x - 3)3 + (3x - 5)3 - 3(x - 1)(2x - 3)(3x - 5) = 0
<=> (6x - 9)[(x - 2)2 + (x - 2)2 + (2x - 4)2] = 0
<=>
<=>