Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao thủ vô danh thích ca...
Xem chi tiết
Luong Hoang Long
17 tháng 4 2017 lúc 8:50

ta có 4+4^2+...+4^2016

=>(4+4^2+4^3+4^4+4^5+4^6)+(4^7+4^8+4^9+4^10+4^11+4^12)+...+(4^2011+4^2012+4^2013+4^2014+4^2015+4^2016)

=>4.(1+4+4^2+4^3+4^4+4^5)+4^7.(1+4+4^2+4^3+4^4+4^5)+...+4^2011.(1+4+4^2+4^3+4^4+4^5)

=>4.1365+4^7.1365+...+4^2011.1365

=>1365.(4+4^7+...+4^2011)chia hết cho 105 vì 1365 chia hết cho 105

Vậy C chia hết cho 105

Trương Cao Phong
12 tháng 2 2018 lúc 14:17

ta có:4+4^2+4^3+....+4^2016=4^1+4^2+4^3+....+4^2016

=>có (2016-1):1+1=2016 số số hạng

C=(4+4^2+4^3+4^4+4^5+4^6)+(4^7+4^8+4^9+4^10+4^11+4^12)+....+(4^2011+4^2012+4^2013+4^2014+4^2015+4^2016)

C=4(1+4+4^2+

sorry nha mình bận 

FM Vũ Cát Tường
Xem chi tiết
nguyen thu phuong
1 tháng 4 2018 lúc 13:21

Bài 1:

a) C = 4 + 42 + 43 + 44 + ... + 42015 + 42016

C = (4 + 42 + 43) + (44 + 45 + 46) + ... + (42014 + 42015 + 42016)

C = 4(1 + 4 + 42) + 44 ( 1 + 4 + 42) + ...+ 42014(1 + 4 + 42)

C = 4 . 21 + 44 . 21 + ... + 42014 . 21

C = 21(4 + 44 + ... + 42014\(⋮\)21

=> C \(⋮\)21

C = 4 + 42 + 43 + 44 + 45 + ... + 42015 + 42016

C = (4 + 42 + 43 + 44 + 45 + 46) + ... + (42011 + 42012 + 42013 + 42014 + 42015 + 42016)

C = 4(1 + 4 + 42 + 43 + 44 + 45) + ... + 42011(1 + 4 + 42 + 4+ 44 + 45)

C = 4 . 1365 + 47 . 1365 + ... + 42011 . 1365

C = 1365(4 + 47 + ... + 42011)

mà 1365 \(⋮\)105

=> C \(⋮\)105

Cuber Việt
Xem chi tiết
Akai Haruma
8 tháng 7 2017 lúc 22:24

Lời giải:

\(M=\left ( \frac{1}{4}+\frac{3}{4^3}+...+\frac{2015}{4^{2015}} \right )-\left ( \frac{2}{4^2}+\frac{4}{4^4}+...+\frac{2016}{4^{2016}} \right )=A-B\)

Xét \(A= \frac{1}{4}+\frac{3}{4^3}+...+\frac{2015}{4^{2015}} \Rightarrow 16A=4+\frac{3}{4}+\frac{5}{4^3}+...+\frac{2015}{4^{2013}}\)

\(\Rightarrow 15A=4+2\underbrace{\left ( \frac{1}{4}+\frac{1}{4^3}+...+\frac{1}{4^{2013}} \right )}_{T}-\frac{2015}{4^{2015}}\)

Lại có \(16T=4+\frac{1}{4}+\frac{1}{4^3}+...+\frac{1}{4^{2011}}\Rightarrow 15T=4-\frac{1}{4^{2013}}\)

Do đó \(A=\frac{1}{15}\left ( 4+\frac{8}{15}-\frac{2}{15.4^{2013}}-\frac{2015}{4^{2015}} \right )\)

Thực hiện tương tự, suy ra

\(B=\frac{1}{15}\left ( 2+\frac{2}{15}-\frac{2}{15.4^{2014}}-\frac{2016}{4^{2016}} \right )\)

\(\Rightarrow M=A-B=\frac{1}{15}\left ( \frac{12}{5}-\frac{90692}{15.4^{2014}} \right )<\frac{1}{15}.\frac{12}{5}=\frac{4}{25}\)

Ta có đpcm

Nguyễn Đạt
Xem chi tiết
Sherlockichi Kudoyle
17 tháng 8 2016 lúc 20:19

Ta có: C = 4 + 42 + 43 + ..... + 42016

=>      C = (4 + 42 + 43) + ..... + (42014 + 42015 + 42016)

=>      C = 4.(1 + 4 + 16) + .... + 42014.(1 + 4 + 16)

=>      C = 4.21 + ..... + 42014.21

=>      C = 21.(4 + .... + 42014) chai ết cho 21

Vũ Nam Khánh
Xem chi tiết
Trần Ngọc Ánh
31 tháng 3 2018 lúc 20:52

Cách làm như sau:

-Chứng minh C chia hết cho 5 bằng cách nhóm 2 số vào một cặp

-Chứng minh C chia hết cho 21 bằng cách nhóm 3 số vào một cặp

Mà 21 và 5 nguyên tố cùng nhau =>C chia hết cho 21.5 => C chia hết cho 105(đpcm)

Phùng Minh Quân
31 tháng 3 2018 lúc 10:27

Ta có : 

\(C=4^1+4^2+4^3+4^4+...+4^{2016}\)

\(C=\left(4^1+4^2\right)+\left(4^2+4^3\right)+...+\left(4^{2015}+4^{2016}\right)\)

\(C=4\left(1+4\right)+4^2\left(1+4\right)+...+4^{2015}\left(1+4\right)\)

\(C=4.5+4^2.5+...+4^{2015}.5\)

\(C=5\left(4+4^2+...+4^{2015}\right)⋮5\) \(\left(1\right)\)

Lại có : 

\(C=4^1+4^2+4^3+4^4+...+4^{2016}\)

\(C=\left(4^1+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+...+\left(4^{2014}+4^{2015}+4^{2016}\right)\)

\(C=4\left(1+4+16\right)+4^4\left(1+4+16\right)+...+4^{2014}\left(1+4+16\right)\)

\(C=4.21+4^4.21+...+4^{2014}.21\)

\(C=21\left(4+4^4+...+4^{2014}\right)⋮21\) \(\left(2\right)\)

Từ (1) và (2) suy ra : \(C⋮5\) và \(C⋮21\)

\(\Rightarrow\)\(C⋮5.21=105\)

\(\Rightarrow\)\(C⋮105\)

Vậy \(C⋮105\)

Chúc bạn học tốt ~ 

miko halo
Xem chi tiết
Soái Nhi
Xem chi tiết
Mới vô
14 tháng 5 2017 lúc 8:32

\(E=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{2015}{3^{2015}}-\dfrac{2016}{3^{2016}}\\ 3E=1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{2015}{3^{2014}}-\dfrac{2016}{3^{2015}}\\ 3E+E=\left(1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{2015}{3^{2014}}-\dfrac{2016}{3^{2015}}\right)+\left(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{2015}{3^{2015}}-\dfrac{2016}{3^{2016}}\right)\\ 4E=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{2014}}-\dfrac{1}{3^{2015}}-\dfrac{2016}{3^{2016}}\\ 4E< 1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{2014}}-\dfrac{1}{3^{2015}}\left(1\right)\)

Gọi \(D=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{2015}}\)

\(3D=3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{2013}}-\dfrac{1}{3^{2014}}\\ 3D+D=\left(3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{2013}}-\dfrac{1}{3^{2014}}\right)+\left(1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{2014}}-\dfrac{1}{3^{2015}}\right)\\ 4D=3-\dfrac{1}{3^{2015}}< 3\\ \Rightarrow D< \dfrac{3}{4}\left(2\right)\)

Từ (1) và (2) ta có:

\(4E< \dfrac{3}{4}\\ \Rightarrow E< \dfrac{3}{16}\)

NNNNNNNNN
Xem chi tiết
Nguyễn Nhữ Nhất
30 tháng 4 2018 lúc 20:43

một thửa ruộng hình bình hành có tổng đáy và chiều cao 96m . Cạnh đáy bằng 3/3 chiều cao

A. Tính diện tích thửa ruộng đó.

B.Người ta trồng rau trên thửa ruộng ,cứ 2m vuông thu được 6kg .Tính số rau thu được

haquynhanh
Xem chi tiết
Nguyễn Anh Quân
30 tháng 11 2017 lúc 20:10

Biểu thức trên = (4+4^2+4^3)+(4^4+4^5+4^6)+....+(4^2014+4^2015+4^2016)

= 4.(1+4+4^2)+4^4.(1+4+4^2)+....+4^2014.(1+4+4^2)

= 4.21+4^4.21+....+4^2014.21

= 21.(4+4^4+....+4^2014) chia hết cho 21

=> ĐPCM

k mk nha

= (4+42+23)+...+(42014+42015+42016

= 4(1+4+16)+...+42014(1+4+16) 

= 4.21+...+42014.21 

= 21(4+...+42014) chia hết cho 21