cho Δ ABC . ( AB < AC ) . Đường phân giác AD .
a, Chứng minh \(\widehat{ADB}< \widehat{ADC}\)
b, E ϵ AC sao cho : BE ⊥ AD. chứng minh Δ ABE cân
c, chứng minh BD < CD
Cho Δ ABC vuông tại A có BD là phân giác của \(\widehat{ABC}\) (D∈AC). Kẻ DE ⊥ BC (E∈BC). Gọi F là giao điểm của BA và ED.
a) Chứng minh Δ ABD = Δ EBD
b) Chứng minh AD < DC
c) Chứng minh \(\widehat{ADF}=2\widehat{ABD}\)
cho Δ abc vuông tại A . TIa phân giác góc ABC cắt AC tại D .Vẽ DE vuông góc bc tại E
a, chứng minh Δ adb=Δ edb; ad=de
b,chứng minh AD<BC
c, góc abe cắt bd tại f. chứng minh cf là trung tuyến Δ ace
d, đt vuônggóc bc tại b cắt ca tại m . gọ I là điểm bất kì thuộc ab. trên tia đối be lấy điểm j sao cho AJ=bi, đt vuông gócAB tại I cắt BM tại P . Chứng minh PJ vuông góc JC
Sai đề rùi
Góc ABE ko có cắt BD tại F đc nha!!!
a, xét 2 tam giác vuông ADB và EDB có:
DB cạnh chung
\(\widehat{ABD}\)=\(\widehat{EBD}\)(gt)
=> \(\Delta\)ADB=\(\Delta\)EDB(CH-GN)
=> AD=DE(2 cạnh tương ứng)
b, có sai đề ko vậy, hay là AD<DC
Cho tam giác ABC có AB<AC, tia phân giác của ^BAC cắt BC tại D
a, Chứng minh ^BDA < ^ADC
b, Đường thẳng đi qua điểm B và vuông góc với AD cắt AC tại E. chứng minh tam giác ABE là tam giác cân
c, Chứng minh BD < CD
a:
Xét ΔABC có AB<AC
mà \(\widehat{C};\widehat{B}\) lần lượt là góc đối diện của các cạnh AB,AC
nên \(\widehat{ACB}< \widehat{ABC}\)
Ta có: AD là phân giác của góc BAC
=>\(\widehat{BAD}=\widehat{CAD}\)
Xét ΔADB có \(\widehat{ADC}\) là góc ngoài tại đỉnh D
nên \(\widehat{ADC}=\widehat{DAB}+\widehat{ABD}=\widehat{DAB}+\widehat{ABC}\)
Xét ΔADC có \(\widehat{ADB}\) là góc ngoài tại đỉnh D
nên \(\widehat{ADB}=\widehat{DAC}+\widehat{ACB}\)
Ta có: \(\widehat{ADC}=\widehat{BAD}+\widehat{ABC}\)
\(\widehat{ADB}=\widehat{DAC}+\widehat{ACB}\)
mà \(\widehat{BAD}=\widehat{DAC};\widehat{ABC}>\widehat{ACB}\)
nên \(\widehat{ADC}>\widehat{ADB}\)
b: Xét ΔABE có
AD là đường cao
AD là đường phân giác
Do đó: ΔABE cân tại A
c: Xét ΔABC có AD là phân giác
nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)
mà AB<AC
nên DB<DC
Cho tam giác ABC (AB < AC). Phân giác trong AD. Trên tia đối của tia DA lấy I sao cho \(\widehat{BAD}\) = \(\widehat{DCI}\)
a) Chứng minh \(\Delta ADB\sim\Delta DCI\)
b) Chứng minh \(\dfrac{AD}{AC}\)=\(\dfrac{AB}{AI}\)
c) Chứng minh AD2 = AB.AC - DB.DC
d) Gọi AE là phân giác ngoài của \(\Delta ABC\) (\(E\in BC\)). Chứng minh \(\dfrac{DB}{DC}\) = \(\dfrac{EB}{EC}\)và AE2 = EC.EB - AB.AC
cho tam giác nhọn ABCcó 3 đường cao AD,BE,CF
a, chứng minh\(\Delta\) ABE\(\sim\)\(\Delta\) ACF
b, chứng minh tam giác AF*AC=AF*AB
c, chứng minh \(\widehat{AEF}=\widehat{ABC}\)
Cho Δ ABC có AB=AC. Kẻ BD vuông góc AC, CE vuông góc AB (D ϵ AC; E ϵ AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a) Δ ABD = Δ ACE
b) BD = CE
c) Δ AOE = Δ AOD
d) Δ OEB = Δ ODC
e) AO là tia phân giác của góc BAC
mong mọi người giải giúp mình với ạ mình đang cần gấp
Cho Δ ABC ⊥ tại A . Đường phân giác BD . Vẽ DH vuông góc với BC ( H ϵ BC )
a) Chứng minh Δ ABD bằng Δ HBC
b) Chứng minh AD bé hơn DC
c) Trên tia đối AB lấy điểm K sao cho AK bằng HC . Chứng minh ΔDKC cân
d) Chứng minh D,H.K không thẳng hàng
Vẽ hình và giải bài giúp ạ em cảm ơn !
a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
b: Ta có: ΔABD=ΔHBD
nên DA=DH
mà DH<DC
nên DA<DC
c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
AK=HC
Do đó: ΔDAK=ΔDHC
Suy ra: DK=DC
hay ΔDKC cân tại D
d: Ta có: ΔDAK=ΔDHC
nên \(\widehat{ADK}=\widehat{HDC}\)
\(\Leftrightarrow\widehat{HDC}+\widehat{KDC}=180^0\)
hay H,D,K thẳng hàng
cho ∆ABC Với đường trug tuyến AD, Tia phân giác của góc ADB cắt cạnh AB ở E , tia phân giác góc ADC cắt cạnh AC tại M. a) Chứng minh AE/EB =AD/BD . b) chứng minh AM,CD = AD,MC . c) chứng minh EM//BC. d) Gọi K là giao điểm của AD và EM . Chứng minh K là trung điểm của EM
5. Cho tam giác ABC; 2 đường phân giác AD, BE; với D ϵ BC, E ϵ AC. CMR:
a) \(\widehat{ADC}=\widehat{BEC}\) thì \(\widehat{A}=\widehat{B}\).
b) \(\widehat{ADB}=\widehat{BEC}\) thì \(\widehat{A}+\widehat{B}=120^o\).
a) Để chứng minh a) ta cần chứng minh rằng góc ADC bằng góc BEC.
Vì AD là đường phân giác của góc BAC, nên ta có:
∠DAB = ∠DAC (1)
Tương tự, vì BE là đường phân giác của góc ABC, nên ta có:
∠CBA = ∠CBE (2)
Từ (1) và (2), ta có:
∠DAB + ∠CBA = ∠DAC + ∠CBE
∠DAB + ∠CBA = ∠BAC + ∠ABC
∠DAB + ∠CBA = ∠ABC + ∠BAC
Do đó, góc ADC bằng góc BEC.
Tiếp theo, để chứng minh rằng góc A bằng góc B, ta sử dụng định lý phụ của đường phân giác:
∠DAB = ∠DAC
∠EBA = ∠EBC
Vì ∠ADC = ∠BEC (đã chứng minh ở trên), nên ta có:
∠DAC + ∠ADC = ∠DAB + ∠ABC
∠DAB + ∠ABC = ∠DAC + ∠ADC
Từ đây, suy ra ∠A = ∠B.
Vậy, điều phải chứng minh a) đã được chứng minh.
b) Để chứng minh b), ta cần chứng minh rằng góc ADB bằng góc BEC.
Từ ∠ADB = ∠BEC (đã chứng minh ở a)), ta có:
∠ADB + ∠BEC = ∠BEC + ∠BEC
∠ADB + ∠BEC = 2∠BEC
∠ADB = ∠BEC
Do đó, góc ADB bằng góc BEC.
Tiếp theo, ta có:
∠A + ∠B + ∠C = 180° (định lý tổng các góc trong tam giác)
∠ADB + ∠B + ∠BEC = 180°
∠BEC + ∠B + ∠BEC = 180° (vì ∠ADB = ∠BEC)
2∠BEC + ∠B = 180°
2∠BEC = 180° - ∠B
∠BEC = (180° - ∠B) / 2
∠BEC = 90° - ∠B/2
∠BEC = 90° - ∠A/2 (vì ∠A = ∠B)
∠A/2 + ∠B/2 + ∠C = 90°
∠A/2 + ∠B/2 + ∠C = 90° - ∠A/2
∠A/2 + ∠A/2 + ∠C = 90° - ∠A/2
∠A + ∠C = 90° - ∠A/2
∠A + ∠C + ∠A/2 = 90°
2∠A + ∠C = 180°
∠A + ∠C = 180° - ∠A
∠A + ∠C = ∠B
∠A + ∠B + ∠C = 180°
∠A + ∠B + ∠C = 120° + 60°
∠A + ∠B + ∠C = 180°
Do đó, ∠A + ∠B = 120°.
Vậy, điều phải chứng minh b) đã được chứng minh.