cho A = 1/2 + 3/2 + 3/2^2 + 3/2^3 + ... + 3/2 ^ 2023
Tính A-B Cho A= 1/2 +3/2^2 +3/2^3+...+3/2^2022
B= 2. 3/2^2023
A = \(\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{3}{2^2}+\dfrac{3}{2^3}+.....+\dfrac{3}{2^{2021}}+\dfrac{3}{2^{2022}}\)
\(2\times\)A = 1 + 3+ \(\dfrac{3}{2}\) +\(\dfrac{3}{2^2}\) + \(\dfrac{3}{2^3}\)+...........+\(\dfrac{3}{2^{2021}}\)
2 \(\times\) A - A = 4 - \(\dfrac{1}{2}\) - \(\dfrac{3}{2^{2022}}\)
A = \(\dfrac{7}{2}\) - \(\dfrac{3}{2^{2022}}\)
B = 2 \(\times\dfrac{3}{2^{2023}}\)
A - B = \(\dfrac{7}{2}-\dfrac{3}{2^{2022}}\) - 2 \(\times\) \(\dfrac{3}{2^{2023}}\)
A - B = \(\dfrac{7}{2}\) - \(\dfrac{3}{2^{2022}}\) - \(\dfrac{3}{2^{2022}}\)
A - B = \(\dfrac{7}{2}\) - \(\dfrac{6}{2^{2022}}\)
A - B = \(\dfrac{7}{2}\) - \(\dfrac{3}{2^{2021}}\)
Tính A-B Cho A= 1/2 +(3/2)^2 +(3/2)^3+...+(3/2^)2022
B= 2. (3/2)^2023
Cho A =3/2^2+8/3^2+15/4^2+…+2023^2-1/2023^2
Chứng minh A không phải là số tự nhiên
cho a =1/3 - 2/3*2 + 3/3*3 - 4/3*4 + 5/3*5 - ...... + 2023/3*2023 - 2024/3*2024 hãy so sánh a với 20/3
Sửa đề: \(a=\frac13-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\cdots+\frac{2023}{3^{2023}}-\frac{2024}{3^{2024}}\)
Ta có: \(a=\frac13-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\cdots+\frac{2023}{3^{2023}}-\frac{2024}{3^{2024}}\)
=>\(3a=1-\frac23+\frac{3}{3^2}-\frac{4}{3^3}+\cdots+\frac{2023}{3^{2022}}-\frac{2024}{3^{2023}}\)
=>\(3a+a=1-\frac23+\frac{3}{3^2}-\frac{4}{3^3}+\cdots+\frac{2023}{3^{2022}}-\frac{2024}{3^{2023}}+\frac13-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\cdots+\frac{2023}{3^{2023}}-\frac{2024}{3^{2024}}\)
=>\(4a=1-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{2023}}-\frac{2024}{3^{2024}}\)
Đặt \(b=-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{2023}}\)
=>\(3b=-1+\frac13-\frac{1}{3^2}+\cdots-\frac{1}{3^{2022}}\)
=>\(3b+b=-1+\frac13-\frac{1}{3^2}+\cdots-\frac{1}{3^{2022}}-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{2023}}\)
=>\(4b=-1-\frac{1}{3^{2023}}=\frac{-3^{2023}-1}{3^{2023}}\)
=>\(b=\frac{-3^{2023}-1}{4\cdot3^{2023}}\)
Ta có: \(4a=1-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{2023}}-\frac{2024}{3^{2024}}\)
=>\(4a=1+\frac{-3^{2023}-1}{4\cdot3^{2023}}-\frac{2024}{3^{2024}}=1+\frac{-3^{2024}-3}{4\cdot3^{2024}}-\frac{8096}{4\cdot3^{2024}}\)
=>\(4a=1-\frac{3^{2024}+8099}{4\cdot3^{2024}}=1-\frac14-\frac{8099}{4\cdot3^{2024}}=\frac34-\frac{8099}{4\cdot3^{2024}}\)
=>\(4a<\frac34\)
=>\(a<\frac{3}{16}\)
mà \(\frac{3}{16}<1<\frac{20}{3}\)
nên \(a<\frac{20}{3}\)
cho A= 3/2^2+8/3^3+15/4^2+......+2023^2-1/2023^2 chứng minh rằng biểu thức a có giá trị là một số tự nhiên
A=223+328+4215+...+2023220232−1
\(A = \frac{2^{2} - 1}{2^{2}} + \frac{3^{2} - 1}{3^{2}} + \frac{4^{2} - 1}{4^{2}} + . . . + \frac{202 3^{2} - 1}{202 3^{2}}\)
\(A = 1 - \frac{1}{2^{2}} + 1 - \frac{1}{3^{2}} + 1 - \frac{1}{4^{2}} + . . . + 1 - \frac{1}{202 3^{2}}\)
\(A = \left(\right. 1 + 1 + 1 + . . . + 1 \left.\right) - \left(\right. \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + . . + \frac{1}{202 3^{2}} \left.\right)\)
Tổng số hạng của 2 ngoặc trên bằng nhau và =(2023-2):1+1=2022(số hạng)
\(A = 2022 - \left(\right. \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + . . . + \frac{1}{202 3^{2}} \left.\right)\)
Ta thấy:
\(0 < \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + . . . + \frac{1}{202 3^{2}} < \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + . . + \frac{1}{2022.2023}\)
Ta có
\(\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + . . + \frac{1}{2022.2023}\)
\(= 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + . . + \frac{1}{2022} - \frac{1}{2023}\)
\(= 1 - \frac{1}{2023} < 1\)
Do đó,2021<A<2022
Vậy giá trị của A không phải 1 số tự nhiên(đpcm)
cho A=3/2^2 + 8/3^2 + 15/4^2 +.....+ 2023^2-1/2023^2. CMR biểu thức A có giá trị ko phải là một số tự nhiên
322+832+1542+....+20232-120232"" id="MathJax-Element-1-Frame" role="presentation" tabindex="0" style="box-sizing: inherit; display: inline-table; line-height: 0; font-size: 18.08px; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">A=322+832+1542+....+20232−120232�=322+832+1542+....+20232-120232A=
1-122+1-132+1-142+....+1-120232"" id="MathJax-Element-2-Frame" role="presentation" tabindex="0" style="box-sizing: inherit; display: inline-block; line-height: 0; font-size: 18.08px; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">A=1−122+1−132+1−1(2+....+1)120232�=1-122+1-132+1-142+....+1-1202321+12+13+...+122023−1
2022-(122+132+142+...+120232)"" id="MathJax-Element-3-Frame" role="presentation" tabindex="0" style="box-sizing: inherit; display: inline-block; line-height: 0; font-size: 18.08px; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">A=2022−(122+132+142+...+120232)�=2022-(122+132+142+...+120232)A
122+132+142+.... <20232
Chứng minh A không phải là số tự nhiên
ai giup e với ạ e like cho !
cho a= 1+3+3^2+3^3+...+3^2023, b=3^2023 tính b- 2a
3A=3+3^2+...+3^2024
=>2A=3^2024-1
=>B-2A=3^2023-3^2024+1
Cho \(A=\dfrac{2}{3}+\dfrac{2}{3^2}+\dfrac{2}{3^3}+....+\dfrac{2}{3^{2023}}\) . Chứng mình rằng \(A< 1\)
Giúp mình với
\(A=\dfrac{2}{3}+\dfrac{2}{3^2}+\dfrac{2}{3^3}+....+\dfrac{2}{3^{2023}}\)
\(3A=2+\dfrac{2}{3}+\dfrac{2}{3^2}+....+\dfrac{2}{3^{2022}}\)
\(3A-A=\left(2+\dfrac{2}{3}+\dfrac{2}{3^2}+...+\dfrac{2}{3^{2022}}\right)-\left(\dfrac{2}{3}+\dfrac{2}{3^2}+....+\dfrac{2}{3^{2023}}\right)\)
\(2A=2-\dfrac{2}{3^{2023}}\)
\(A=\left(2-\dfrac{2}{3^{2023}}\right)\times\dfrac{1}{2}\)
\(A=2\times\dfrac{1}{2}-\dfrac{2}{3^{2023}}\times\dfrac{1}{2}\)
\(A=1-\dfrac{1}{3^{2023}}\)
=> \(A< 1\left(đpcm\right)\)