Tìm m để 2 bất phương trình sau không có nghiệm chung:
\(\frac{8}{x-1}\)> 1 và x \(\ge\)3 - mx.
Tìm m để hai phương trình sau có nghiệm chung
x^2-mx+2m+1=0 và mx^2-(2m-1)x-1=0
Gọi nghiệm chung đó là x0
Có x0^2=mx0-2m-1
x0(mx0-2m+1)-1=0
<=>x0^2+2=mx0-2m+1
x0(x0^2+2)-1=0
Đến đây bạn tìm ra x0 rồi thay vào tìm m nhé
tìm x để 2 bất phương trình sau có đúng một nghiệm chung :
\(m\left(x+3\right)\le x+5;m\left(x+2\right)-3\ge x.\)
Bất phương trình mx\(^2\)+2(m+3)x+m+1\(\ge\)0 vô nghiệm khi và chỉ khi
tìm giá trị m để hai bất phương trình sau có đúng 1 nghiệm chung m(x+3)<=x+5(1);m(x+2)-3>=x(2)
Tìm m để bất phương trình \(\dfrac{x+1}{mx^2-4x+m-3}< 1\) có tập nghiệm là R
\(\Leftrightarrow\dfrac{mx^2-5x+m-4}{mx^2-4x+m-3}>0\)
BPT đã cho có tập nghiệm là R khi và chỉ khi:
\(\left\{{}\begin{matrix}\Delta_1=25-4m\left(m-4\right)< 0\\\Delta'_2=4-m\left(m-3\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-4m^2+16m+25< 0\\-m^2+3m+4< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< \dfrac{4-\sqrt{41}}{2}\\m>\dfrac{4+\sqrt{41}}{2}\end{matrix}\right.\)
TÌm các giá trị của m để hai phương trình sau có nghiệm chung:
\(A\left(x\right)=x^4+mx^2+1\) và \(B\left(x\right)=x^3+xm+1\)
Giúp mình với ạ. Mình cảm ơn!!
Bài 1: Tìm m để phương trình \(\left(m-1\right)x^2+2x+m=0\) có ít nhất một nghiệm không âm
Bài 2: Với giá trị nào của a,b các phương trình bậc hai sau có 2 nghiệm chung
\(\left(2a+1\right)x^2-\left(3a-1\right)x+2=0\)
\(\left(b+2\right)x^2-\left(2b+1\right)x-1=0\)
Bài 3: a) Với giá trị nào của m thì 2 phương trình sau có nghiệm chung
\(2x^2+mx-1=0\) và \(mx^2-x+2=0\)
b) Tim \(m\in Z\) để 2 phương trình sau có ít nhất 1 nghiệm chung
\(x^2-mx-2=0\) và \(x^2-x+6m=0\)
Bài 5: \(\left(m+1\right)x^2-2\left(m+2\right)+m-3=0\)
Tìm m để phương trình sau có 2 nghiệm x1,x2 thỏa mãn:
a) \(x_1-3x_2=3\)
b) \(\left(4x_1+1\right)\left(4x_2+1\right)=18\)
Nhiều thế, chắc phải đưa ra đáp thôi
Cho phương trình x + my - m +1 với m là tham số.
a) Với m = 1, hãy tìm nghiệm tổng quát và vẽ đường thẳng biểu diễn tập
nghiệm của phương trình trên hệ trục tọa độ.
b) Tìm m để phương trình đã cho và phương trình 2x - y = 5
không có nghiệm chung.
c) Tìm m để phương trình đã cho cùng với phương trình mx + y= 3m -1 có
ghiệm chung duy nhất sao cho tích x.y có giá trị nhỏ nhất.
Tìm m để hệ bất phương trình vô nghiệm \(\left\{{}\begin{matrix}mx\le m-3\\\left(m+3\right)x\ge m-9\end{matrix}\right.\)